
Objective Systems, Inc. — January 2019

ASN1 DECODER v2.8

User's Manual

– 2 –

The software described in this document is furnished under a license agreement and may be used only

in accordance with the terms of this agreement.

Copyright Notice

Copyright ©2017–2019 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in

its entirety and that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding this product may be submitted via electronic mail to

info@obj- s ys.co m .

– 3 –

mailto:info@obj-sys.com
mailto:info@obj-sys.com
mailto:info@obj-sys.com
mailto:info@obj-sys.com

– 4 –

Table of Contents
Revision History..7
Overview of ASN1DECODER..9
Using ASN1DECODER..10

Installation...10
Installing on a Windows System...10
Installing on a UNIX System..11
Command-line Options...11

Input and Output Encoding Options...12
Common Options..13
XML/JSON Options...14

Configuration Files..16
Licensing..18
ASN.1 to XML Type Mappings...19

General Mapping without ASN.1 Schema Information..19
General Mapping with ASN.1 Schema Information...20
Specific ASN.1 Type to Value Mappings..21

ASN.1 to JSON Type Mappings..30

– 5 –

– 6 –

Revision History
• February 2018 — Initial release of documentation (2.7 – to match ASN1VE version it is

bundled with)

• April 2018 – Minor updates and corrections.

• January 2019 – Version and copyright updates. Add reference to X.697 JSON Encoding Rules
(JER).

– 7 –

– 8 –

Overview of ASN1DECODER
ASN1DECODER is a command-line tool that translates ASN.1 data encoded in the Basic, Canonical,

Distinguished, or Packed encoding rules into a few text formats suitable for ingestion into text

processing tools. As of this initial version 2.7, ASN1DECODER supports converting ASN.1 data to

XML, XER, and JSON data formats.

Conversions to XML support both an Objective Systems custom format as well as the XML Encoding

Rules standard as described in ITU-T standard X.693. Conversions from all ASN.1 binary encodings

(BER, CER, DER, PER) are supported by ASN1DECODER.

Conversions to JSON conform to ITU-T X.697 JSON Encoding Rules (JER). (Note: earlier versions

followed a proprietary format, which is documented, along with the differences from X.697, at

https://www.obj-sys.com/docs/JSONEncodingRules.pdf.)

– 9 –

http://www.obj-sys.com/docs/JSONEncodingRules.pdf

Using ASN1DECODER

Installation

ASN1DECODER is available either as part of an ASN1VE package (also known as ASN1VE Pro) or

as a standalone kit. Either way, it is contained as part of an executable installation program for

Windows or a .tar.gz archive for UNIX systems. The package is comprised of the following

directory tree (using version 2.7.0 as an example):

asn1ve_v270 (when bundled with ASN1VE)

 OR

asn1dec_v270 (when packaged standalone)

|

+-asn1specs

|

+-bin

|

+-doc

|

+-sample

|

+-sample_per

The bin subdirectory contains the asn1dec executable. The asn1specs directory contains

specifications used by some of the sample programs in the sample directory. This document is found

in the doc directory.

Installing on a Windows System

To install ASN1DECODER on a Windows system, simply double-click the executable installer

program (ASN1VE Pro or ASN1DECODER standalone). Selecting the default installation options will

install ASN1DECODER in either c:\asn1ve_v270 (when bundled with ASN1VE) or c:\

asn1dec_v270 (when packaged standalone).

– 10 –

Installing on a UNIX System

To install ASN1DECODER on a UNIX system, simply unzip and untar the .tar.gz archive. The

program may be unpacked in any directory in which the user has permissions. No installation program

is available to install ASN1DECODER to /usr/local or other common installation paths, but it is

not difficult to manually add links if needed.

Command-line Options

Invoking asn1dec without any options will show a usage message that contains the command-line

options:

ASN1DECODER, version 2.7.0

ASN.1 to text decoder

Copyright (c) 2017-2018 Objective Systems, Inc. All Rights Reserved.

Usage: asn1dec <input files> options

 <input files> ASN.1 message file name (wildcards are okay)

 Input encoding options:

 -in <encode_rule>

 ber Decode from BER (basic encoding rules)

 per Decode from PER (aligned packed encoding rules)

 uper Decode from U-PER (unaligned packed encoding rules)

 Output encoding options:

 -out <encode_rule>

 xml Encode to XML type

 xer Encode to XML XER type

 json Encode to JSON type

 Common options:

 -schema <filename> ASN.1 definition file name(s)

 -config <filename> Configuration file name

 -I <directory> Import ASN.1 files from <directory>

 -pdu <typename> Message PDU type name

– 11 –

 -o <filename> Output filename (use "<base>.xml" for XML batch output)

 -bcdhandling <default|none|bcd|tbcd>

 Define handling of OCTET STRINGs declared to be

 binary coded decimal (BCD) strings

 -oidformat <oidDefValue|namedNumbers|numbersOnly>

 Define format of Object Identifier display

 -noopentype Disable automatic open type decoding

 -paddingbyte <hexbyte> Additional padding byte

 -bitsfmt <hex|bin> BIT STRING content output format

 -inputFileType <binary|hextext|base64>

 Format of data in input file

 -skip <num> Skip <num> bytes between messages

 -headerOffset <num> Skip the first <num> bytes in a data file

 -q Turn off all output except errors

 XML options:

 -ascii Print out ASCII for printable hex values

 -emptyoptionals Insert empty XML elements in place of

 missing optional elements

 -emptydefault Insert XML elements with default values in place

 of missing elements with default values

 -nowhitespace Remove all whitespace between elements

 -noxmlcomments Do not include header comment or message count in output

 -rootElement <element> Root Element Name

 -skip-bad-records Skip messages which could not be decoded

 -decodeheaders <ts-32-297>

 Message file contains 3GPP TS 32.297 CDR records

The following sections summarize the command-line options.

Input and Output Encoding Options

The following input and output encoding options describe the various transformations.

Option Arguments Description

-in ber Decode input from a BER file.

per Decode input from a PER file.

– 12 –

Option Arguments Description

uper Decode input from a U-PER file.

-out xml Encode/write output to an XML file.

xer Encode/write output to an XER file.

json Encode/write output to a JSON file.

Common Options

The following options are common to all transformations.

Option Arguments Description

<filename> <filename> is the name of the input message to
decode. This element is required. The use of
wildcards (e.g.* and ?) is supported.

-schema <filename> This option is required when decoding PER data.
When converting BER data to XML or JSON, a
schema is optional. Without a schema, ASN1DE-
CODER will convert the data to a non-standard
encoding, using tag names.

-config <filename> Allows an Obj-Sys configuration file to be used
in translation. Configuration settings can be used
to apply options to specific items within a
schema.

-bcdhandling <default | none | bcd | tbcd> Define handling of OCTET STRINGs declared
to be binary coded decimal (BCD) strings. By
default, types declared as BCD or TBCD strings
will be translated as such. <none> forces transla-
tion to be performed as usual, while <bcd> and
<tbcd> force their respective formatting on such
OCTET STRINGs.

-bitsfmt <hex | bin> Specify how BIT STRING items are formatted.
By default they are expressed as hexadecimal
strings; use bin to express them as binary strings
instead.

-inputFileType <binary | hextext | base64> Specify how the input data is formatted. By de-
fault ASN1DECODER will assume that the input
data is binary, but it can also decode hexadecimal
or base64 encoded data. Whitespace in the input

– 13 –

Option Arguments Description

is ignored when hextext is specified.

-noopentype Disables the conversion of open types in the out-
put.

-oidformat <oidDefValue |namedNum-
bers |numbersOnly>

Define format of Object Identifier display. By
default (or using <oidDefValue>), the value is
displayed as it was defined. Using <namedNum-
bers> or <numbersOnly>, the value is displayed
as such (for example “iso(1)” or “1”, respec-
tively) and includes as many arcs as possible.

-paddingbyte <hexbyte> <hexbyte> is the hexadecimal value of a padding
byte that may appear in the input message. Call
data records (CDRs) are commonly continuously
dumped to files by telephony equipment. If no
information is available, the records are often
padded by 0x00 or 0xFF bytes. The default pad-
ding byte is 0x00. <hexbyte> may be formatted
with or without a 0x prefix.

-pdu <typename> <typename> is the name of the PDU data type to
be decoded. This option is necessary when the
top-level data type is ambiguous. It is also re-
quired when converting PER data.

-o <filename> Specify the output XML or JSON <filename> in-
stead of writing output to standard out. Set <file-
name> to “<base>.xml” to specify batch output
when converting multiple files for XML.

-q Operate in a “quiet” mode more suitable for
batch processing. Informational messages are
limited and only error output will be reported.

XML/JSON Options

The following options can be used when converting to XML or JSON.

Option Arguments Description

-ascii If all bytes in a decoded value are within the ASCII
character range, display as standard text. Otherwise dis-
play as formatted hexadecimal text. This option only

– 14 –

Option Arguments Description

has meaning if BER data is decoded without a schema
file.

-emptyDefault Insert an element with a default value as specified in the
schema at the location of a missing element in the in-
stance.

-emptyOptionals Insert an empty element at the location of a missing ele-
ment in the schema that was declared to be optional.

-nowhitespace Do not generate any whitespace (blanks and newline
characters) between elements. This makes the generated
document more compact at the expense of readability.

-rootElement <name> Specify the root element <name> used to wrap the entire
XML message at the outer level. This makes it possible
to create an XML document for an ASN.1 file contain-
ing multiple individually encoded binary messages (a
common feature of many Call Detail Record ASN.1 for-
mats). Not used for JSON output.

-skip-bad-records This option enables more thorough detection of badly
formed records and attempts to skip such records. This
can occur if an unrecognized tag is encountered, for ex-
ample. In some cases, it is impossible to continue trans-
lation after a bad record, such as when an incorrect
length value was encoded.

-decodeheaders

<ts-32-297> Specify a message file containing 3GPP TS 32.297 CDR
records, with an overall CDR File Header and CDR
Header records prior to each message.

– 15 –

Configuration Files

ASN1DECODER provides the option of including a configuration file during the translation. This

allows the user to set certain options for specific items in the schema.

Option Values Description

displayFormat ipv4 | ipv6 | tbcd Formats an OCTET STRING (“789ABCDE”, for ex-
ample) as an IPv4 address (“120.154.188.224”), IPv6
address (“78:9A:BC:DE”), or TBCD string
(“87*9a#cb”), respectively. “imei” and “imsi” are
aliases for “tbcd.”

format hex When applied to integer types, the format option allows
users to output the contents in base 16 rather than base
10. Output is prefixed with “0x” to explicitly denote
hexadecimal digits.

Configuration files are formatted as XML and use the top-level tag <asn1config>. Below the top level,

<module>, <production>, and <element> tags can be nested, one within the other. At each level, the tag

must include the “name” attribute.

So for example, given a schema like this:

MyData DEFINITIONS ::= BEGIN

IPAddress ::= OCTET STRING (SIZE (4))

TwoIPAddresses ::= SEQUENCE {
ipAddress1 IPAddress,
ipAddress2 IPAddress

}

END

A configuration file might look like this:

<asn1config>
<module name=”MyData”>

<production name=”TwoIPAddresses”>
<element name=”ipAddress1”>

<displayFormat>ipv4</displayFormat>
</element>

</production>
</module>

</asn1config>

– 16 –

In this case, the configuration specifies displayFormat at the element level for the ipAddress1 element.

Note that the <element> tag must be nested within a <production> tag (which must also be nested

within a <module> tag). Then, whenever a TwoIPAddresses is translated, it would be output like this

(in XML, for example):

<message>
<!-- message 1 -->
<TwoIPAddresses>

<ipAddress1>123.45.67.89</ipAddress1>
<ipAddress2>7B2D4359</ipAddress2>

</TwoIPAddresses>
</message>

Since the displayFormat option was set at the element level and only for ipAddress1, only that element

is affected. In order to apply such formatting for all IPAddress types, the option can be set at the

production level like so:

<asn1config>
<module name=”MyData”>

<production name=”IPAddress”>
<displayFormat>ipv4</displayFormat>

</production>
</module>

</asn1config>

Note that in this case, the <production> tag's name attribute specifies the type which will be affected,

rather than the type containing the affected element, as above.

– 17 –

Licensing
The ASN1DECODER application must have access to a valid ASN1VE license in order for it to run

properly. This license key is normally sent by e-mail after a license is purchased (permanent key) or

when the user requests an evaluation version (evaluation key). If not already set up for ASN1VE, this

osyslic.txt or RLM license file can be copied into one of several places:

1. To a directory on the system-wide PATH.

2. To the directory indicated by the OSLICDIR (for osyslic.txt) or RLM_LICENSE

(for RLM file) environment variable.

3. To the directory from which the application is being executed.

– 18 –

ASN.1 to XML Type Mappings
This chapter describes the mapping between ASN.1 encoded data values and XML for each of the

ASN.1 types defined in the X.680 standard.

General Mapping without ASN.1 Schema Information

A BER, DER, or CER encoded data stream may be translated to XML format without providing

associated ASN.1 schema information. In this case, XML element names are derived from built-in

ASN.1 tag information contained within the message and values are encoded as either hexadecimal

text, ASCII text, or as specific data-typed values if universal tag information is present.

XML element names derived from ASN.1 tag names for all tags except known universal tags is in the

following general form:

<TagClass_TagValue>

where TagClass is the tag class name (APPLICATION, CONTEXT, or PRIVATE) and TagValue is the

numeric tag value. For example, an [APPLICATION 1] tag would be printed as <APPLICATION_1>

and a [0] tag (context-specific zero) would be printed as <CONTEXT_0>.

In the case of known universal tags, the tag value is derived using the name of the known type. In

general, this is the type name defined in the ASN.1 standard with an underscore character used in place

of embedded whitespace if it exists. The following table shows the XML tag names for the known

types:

Tag XML Element Name

UNIVERSAL 1 BOOLEAN

UNIVERSAL 2 INTEGER

UNIVERSAL 3 BIT_STRING

UNIVERSAL 4 OCTET_STRING

UNIVERSAL 5 NULL

UNIVERSAL 6 OBJECT_IDENTIFIER

UNIVERSAL 7 OBJECT_DESCRIPTOR

– 19 –

Tag XML Element Name

UNIVERSAL 8 EXTERNAL

UNIVERSAL 9 REAL

UNIVERSAL 10 ENUMERATED

UNIVERSAL 12 EMBEDDED_PDV

UNIVERSAL 13 RELATIVE_OID

UNIVERSAL 16 SEQUENCE

UNIVERSAL 17 SET

UNIVERSAL 18-22, 25-30 Character string

UNIVERSAL 23 UTCTIME

UNIVERSAL 24 GENERALIZEDTIME

Element content will be formatted in one of three ways: hexadecimal text, ASCII (character) text, or

specific-typed value.

Hexadecimal text is the default format for untyped content. ASCII text will be used if the -ascii

command-line switch is specified and all byte values within a particular field are determined to be

printable ASCII characters. A specific-type value encoding will be done if a known universal tag is

found. The mapping in this case will be as described in the "Specific ASN.1 Type to XML Value

Mapping" section below.

General Mapping with ASN.1 Schema Information

ASN.1 schema information is used if one or more ASN.1 schema files are specified on the command-

line using the -schema command-line switch. In this case, element names as specified in the schema

file are used for the XML element names and the content is decoded based on the specific type.

It is possible to use the –pdu command-line switch to force the association of a type within the

specification to the message. This is only necessary if the ASN.1 files contain multiple types with the

same start tag as the message type. Otherwise, the program will be able to determine on its own which

– 20 –

type to use by matching tags. This is true for BER/DER/CER messages only: for PER, it is necessary to

specify the PDU type along with the schema.

Specific ASN.1 Type to Value Mappings

This section defines the type-to-value mapping for each of the specific ASN.1 types. By default, these

mappings are not in the form defined in the ASN.1 XML Encoding Rules (XER) standard (ITU-T

X.693).

When a schema is provided using the -schema option, the output may be adjusted to conform to XER

if desired by using the -xer option. XER is more verbose and less validation-friendly than our native

XML export. It is provided for those occasions when strict conformance is required. Differences

between the two formats are provided along with the schemaless mappings below.

BOOLEAN. An ASN.1 boolean value is transformed into the keyword 'true' or 'false'. If BER/

DER/CER data is being decoded without a schema and the universal tag for this type is parsed, a

<BOOLEAN> tag is added.

b BOOLEAN ::= TRUE

Schemaless <BOOLEAN>TRUE</BOOLEAN>

XML Mode true

XER Mode <TRUE/>

INTEGER. An ASN.1 integer value is transformed into numeric text. The one exception to this rule is

if named number identifiers are specified for the integer type. In this case, if the number matches one of

the declared identifiers, the identifier text is used.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

an <INTEGER> tag is added.

i INTEGER ::= 35

Schemaless <INTEGER>35</INTEGER>

With schema <i>35</i>

– 21 –

ENUMERATED. An ASN.1 enumerated value is transformed into the enumerated identifier text

value. If BER/DER/CER data is being decoded without a schema and the universal tag for this type is

parsed, an <ENUMERATED> tag is added.

colors ENUMERATED {r, g, b} ::= g

Schemaless <ENUMERATED>1</ENUMERATED>

XML Mode <colors>g</colors>

XER Mode <colors><g/></colors>

BIT STRING. An ASN.1 bit string value is transformed into one of three forms:

1. Binary Text (0's and 1's)

1. Hexadecimal text

2. Named bit identifiers

Binary text is the default output format. This is used if the bit string type contains no named bit

identifiers and if specification of hexadecimal output was not specified on the asn1dec command-

line.

Hexadecimal text is displayed when the -bitsfmt hex command-line option is used. Any unused

bits in the last octet are set to zero. Note that the other bits are displayed in most-significant bit order as

they appear in the string in the last byte (i.e., they are not right shifted). For example, if the last byte

contains a bit string value of 1010xxxx (where x denotes an unused bit), the string is displayed as A0 in

the XML output, not 0A.

Named bit identifiers are used in the case of a bit string declared with identifiers. In this case, the XML

content is a space-separated list of identifier values corresponding to the bits that are set. It is assumed

that bits in the string all have corresponding identifier values.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

a <BIT_STRING> tag is added.

– 22 –

bs BIT STRING {z(0), a(1), b(2), c(3)} ::=
'100100'B

Schemaless <BIT_STRING>100100</BIT_STRING>

With Schema <bs>100100</bs>

OCTET STRING. An ASN.1 octet string value is transformed into one of two forms:

1. Hexadecimal text

2. ASCII character text

Hexadecimal text is the default display type. ASCII text will be used for the content when the ascii

command-line option is used and the field contains only printable ASCII characters. A special case of

OCTET STRING handling is for binary-coded decimal (BCD) data types; these will be formatted as

described below.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

a <OCTET_STRING> tag is added.

Binary-coded Decimal String. Binary-Coded Decimal (BCD) strings and Telephony Binary-Coded

Decimal (TBCD) strings are not part of the ASN.1 standard, but their use is prevalent in many

telephony-related ASN.1 specifications. Conversion of these types into standard numeric text strings is

supported.

BCD strings usually pack two numeric digits into a single byte value by using a four-bit nibble to hold

each digit. (Occasionally the nibbles are interpreted as control characters like like #, *, and so on.) By

convention, the nibbles are swapped in TBCD strings, but there are no official standards for this

encoding.

The -bcdhandling command-line option can be used to force a certain type of conversion if an

encoding does not follow the usual conventions. The default handling is to reverse digits in strings

determined to be TBCD strings and not reverse digits in BCD strings. The bcd option instructs

ASN1DECODER not to reverse digits for all BCD strings. The tbcd option instructs

ASN1DECODER to reverse the digits for all BCD strings.

– 23 –

If no processing is desired, -bcdhandling none can be used to instruct ASN1DECODER to treat

these strings as simple octet strings.

os OCTET STRING ::= '3031'H

Schemaless <OCTET_STRING>3031</OCTET_STRING>

With schema <os>3031</os>

With -ascii <os>01</os>

NULL. An ASN.1 null value is displayed as an empty XML element. If BER/DER/CER data is being

decoded without a schema and the universal tag for this type is parsed, a <NULL> tag is added.

n NULL ::= NULL

Schemaless <NULL/>

XML Mode <n/>

XER Mode <n><NULL/></n>

OBJECT IDENTIFIER and RELATIVE OID. An ASN.1 object identifier value is mapped into

space-separated list of identifiers in numeric and/or named-number format. The identifiers are enclosed

in curly braces ({ }). Numeric identifiers are simply numbers. The named-number format is a textual

identifier followed by the corresponding numeric identifier in parentheses. It is used in cases where the

identifier can be determined from the schema or is a well known identifier as specified in the ASN.1

standard.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

an <OBJECT_IDENTIFIER> tag is added.

oid OBJECT IDENTFIER ::=
 { 1 2 840 113549 1 1 2 }

Schemaless <OBJECT_IDENTIFIER>{1 2 840
113549 1 1 2} </OBJECT_IDENTI-
FIER>

With schema <oid>{ 1 2 840 113549 1 1 2 }</
oid>

– 24 –

The mapping for RELATIVE OID is the same as that for OBJECT IDENTIFIER.

Character String. An ASN.1 value of any of the known character string types is transformed into the

character string text in whatever the default encoding for that type is. For example, an IA5String would

contain an ASCII text value whereas a BMPString would contain a Unicode value.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

a tag is added which is the name of the character string type as defined in the ASN.1 standard in angle

brackets. For example, the default tag for a UTF8String type would be <UTF8String>.

str UTF8String ::= “testing”

Schemaless <UTF8String>testing</UTF8String>

With schema <str>testing</str>

REAL. An ASN.1 real value is transformed into numeric text in exponential number format. If

BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed, a

<REAL> tag is added.

r REAL ::= 137.035999074

Schemaless <REAL>137.035999074</REAL>

With schema <r>137.035999074</r>

SEQUENCE and SET. An ASN.1 sequence value is transformed into an XML value containing an

element wrapper with each of the XML element encoded values inside.

name ::= SEQUENCE {
 first UTF8String,
 middle UTF8String OPTIONAL,
 last UTF8String
}

name Name ::= {
 first “Joe”,
 last “Jones”
}

Schemaless <SEQUENCE>
 <CONTEXT_0>
 <UTF8String>Joe</UTF8String>
 </CONTEXT_0>
 <CONTEXT_2>

– 25 –

 <UTF8String>Jones</UTF8String>
 </CONTEXT_2>
</SEQUENCE>

With schema <name>
 <first>Joe</first>
 <last>Jones</last>
</name>

With -emptyOptionals <name>
 <first>Joe</first>
 <middle/>
 <last>Jones</last>
</name>

When a SET is used instead, the outer SEQUENCE tag is replaced with SET. The mappings are

otherwise identical.

SEQUENCE OF / SET OF. The representation of a repeating value in XML varies depending on the

type of the element value.

If the value being translated is a sequence of an atomic primitive type, the XML content is a space-

separated list of values. The definition of "atomic primitive type" is any primitive type whose value

may not contain embedded whitespace. This includes BOOLEAN, INTEGER, ENUMERATED,

REAL, BIT STRING, and OCTET STRING values.

If the value being translated is a constructed type or if it may contain whitespace, the value is wrapped

in a tag which is either the name of the encapsulating type (defined or built-in) or the SEQUENCE OF

element name if this form of the type was used.

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,

a <SEQUENCE> or <SET> tag is added. That is because the tag value (hex 30 or 31) is the same for

SEQUENCE OF or SET OF as it is for SEQUENCE or SET.

soi SEQUENCE OF INTEGER ::= {1, 2, 3}

Schemaless <SEQUENCE>
 <INTEGER>1</INTEGER>
 <INTEGER>2</INTEGER>

– 26 –

 <INTEGER>3</INTEGER>
</SEQUENCE>

With schema <soi>
 <INTEGER>1</INTEGER>
 <INTEGER>2</INTEGER>
 <INTEGER>3</INTEGER>
</soi>

sos SEQUENCE OF UTF8String ::= {
 “test 1”,
 “test 2”
}

Schemaless <SEQUENCE>
 <UTF8STRING>test 1</UTF8STRING>
 <UTF8STRING>test 2</UTF8STRING>
</SEQUENCE>

With schema <sos>
 <UTF8String>test 1</UTF8String>
 <UTF8String>test 2</UTF8String>
</sos>

Name ::= SEQUENCE {
 first UTF8String,
 middle UTF8String OPTIONAL,
 last UTF8String
}

son SEQUENCE OF Name ::= {
 { first 'Joe',
 last 'Jones' },
 { first 'John',
 middle 'P',
 last 'Smith' }
}

Schemaless <SEQUENCE>
 <SEQUENCE>
 <UTF8STRING>Joe</UTF8STRING>
 <UTF8STRING>Jones</UTF8STRING>
 </SEQUENCE>
 <SEQUENCE>
 <UTF8STRING>John</UTF8STRING>
 <UTF8STRING>P</UTF8STRING>
 <UTF8STRING>Smith</UTF8STRING>

– 27 –

 </SEQUENCE>

With schema. This example shows the results
with -emptyOptionals selected. If it were
not, the first <middle/> element would be
omitted.

<son>
 <Name>
 <first>Joe</first>
 <middle/>
 <last>Jones</last>
 </Name>
 <Name>
 <first>John</first>
 <middle>P</middle>
 <last>Smith</last>
 </Name>
</son>

CHOICE. The mapping of an ASN.1 CHOICE value is the alternative element tag followed by the

value translated to XML format.

PDU CHOICE ::= {
 a INTEGER,
 b OCTET STRING,
 s UTF8String
}

c PDU ::= { a : 42 }

Schemaless <INTEGER>42</INTEGER>

With schema <PDU>
 <a>42
</PDU>

Open Type. The mapping of an ASN.1 open type value depends on whether the actual type used to

represent the value can be determined. ASN1DECODER attempts to determine the actual type using

the following methods (in this order):

1. Table constraints

2. Tag lookup in all defined schema types (BER/DER/CER only)

3. Universal tag lookup (BER/DER/CER only)

– 28 –

If the type can be determined, an XML element tag containing the type name is first added followed by

the translated content of the value.

If the type cannot be determined, the open type content is translated into hexadecimal text from of the

encoded value. This will also be done if the -noopentype command-line switch is used.

As an example, consider the AlgorithmIdentifier type used in the AuthenticationFramework and other

related security specifications:

AlgorithmIdentifier ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm})

 OPTIONAL

}

In this case, the parameters element references an open type that is tied to a type value based on the

value of the algorithm key. Without getting into the details of the use of the accompanying information

object sets, it is known that for an algorithm value of object identifier { 1 2 840 113549 1 1 2

}, the type of the parameters field is NULL (i.e. there are no associated parameters). The XML

translation in this case will be the following:

<algorithm>{ 1 2 840 113549 1 1 2 }</algorithm>

<parameters>

 <NULL/>

</parameters>

– 29 –

ASN.1 to JSON Type Mappings
This version of ASN1DECODER follows ITU-T X.697 JSON Encoding Rules (JER).

Earlier versions of ASN1DECODER followed a proprietary mapping. For information on that

mapping and how it differs from X.697, refer to “Javascript Object Notation (JSON) Encoding Rules

for ASN.1” at www.obj-sys.com/docs/JSONEncodingRules.pdf.

– 30 –

http://www.obj-sys.com/docs/JSONEncodingRules.pdf

	Revision History
	Overview of ASN1DECODER
	Using ASN1DECODER
	Installation
	Installing on a Windows System
	Installing on a UNIX System
	Command-line Options
	Input and Output Encoding Options
	Common Options
	XML/JSON Options

	Configuration Files

	Licensing
	ASN.1 to XML Type Mappings
	General Mapping without ASN.1 Schema Information
	General Mapping with ASN.1 Schema Information
	Specific ASN.1 Type to Value Mappings

	ASN.1 to JSON Type Mappings

