objective
SYSTEMS, INC.

ASNI1C

ASN.1 Compiler

Version 7.3

XML Schema Translator Users Guide
Reference Manual

Objective Systems, Inc. version 7.3 — January 2019

The software described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement.

Copyright Notice
Copyright ©1997-2019 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety and
that the copyright and this notice are included.

Author’s Contact Information

Comments, suggestions, and inquiries regarding ASN1C may be submitted via electronic mail to info@obj-sys.com.

Table of Contents

1. Overview Of ASN.L-XSD Translalioncoeuuuuiiiieii it e e e e e eenes 1
2. Using the ASN2XSD command-liNe t00]ooiiiiiiieiiiiie e 2
3. ASN.L t0 XML SCHEMa CONVEISIONuiiiiiieee ettt e et e et e e e et e e e et e e e eba s 4
MappiNg Of TOP-LEVE CONSITUCESceereueeieii ettt e et e et e et e e e e e e raa s 4
MaPPING OF ASN.L TYPESieiiti ettt e ettt e et e ettt e e ettt e ettt e e e ea bt e e et st e e eestneeeestaaeeeentnaaaeees 4
BOOLEAN ...ttt ettt ettt e b 5
INTEGER ...ttt et ettt et e e enanns 5
BIT STRING ..ottt et e ettt e ettt e e ettt e e et et e e e eetb e e e eetnaeeeee 6
OCTET STRING ..ottt ettt ettt ettt e et e b et e et e e e aaa e e enaans 6
CharaCter SITNG TYPES ... eeeetie ettt ettt ettt e et ettt e et et e et e e e et eaa e e e ena e e eneanns 7
RELLLERS L gTo T 1Y = PP PP PP 8
ENUMERATED ...ttt ettt ettt e et et e e et et e e et et e e e e eba e eeene 8
UL L ettt ettt e e e e e e 9
OBUJIECT IDENTIFIER ..ot e e ettt et e e e e e e eat e eenes 9
RELATIVE-OID ...ttt ettt e e e e et e e et e e e e eae s 9
RE AL ..ttt ettt r e eaaas 10
SEQUENCE ...ttt ettt 10
S PSP SPPPTTR 11
SEQUENCE OF / SET OF ..ottt ettt ettt ettt e e et e e et e e et e e eeb e eenes 11
CHOICE ...ttt e et et e e e e 12
1007 o N Y o PP 13
BIE=Te o o I Y o TP SUPPTTR 14
EXTERNAL and EmbeddedPDV TYPE .. .courieiiiiiieeeeei ettt ettt e et e et e eeees 14
Elements with Table CONSITAINTScooeiiiiiiiii e 15
4. XML SChema tO ASN.L CONVEISIONeiitieeiiti ettt et e et e et e e e et e et e e e e et e e e e et e e eeebaaens 19
Running the XSD-t0-ASN.1 Trandlation Tool from the Command-line.............c.coooviiiiiiiiiiiiiin e, 19
XML Schema Binding FIle ... oo 20
XSD-to-ASN.1 Information IEmM MaPPINGScevuueiiiiiei ittt e e e e e eanans 21

Chapter 1. Overview of ASN.1-XSD
Translation

The ASN1C code generation tool trandlates an Abstract Syntax Notation 1 (ASN.1) sourcefileinto computer language
source files that allow ASN.1 data to be encoded/decoded. This release of ASN1C contains facilities to translate
ASN.1 source specifications to an equivalent representation in World-Wide-Web Consortium (W3C) XML Schema
Definition language (X SD).

A utility program is also provided to do the reverse transation from XSD to ASN.1 as specified in the ITU-T
X.694 standard. Thisisthe xsd2asn1 executable program located in the installation bin subdirectory. This programis
described inthe XML Schema to ASN.1 Conversion [http://mww.obj-sys.com/docs/acv63/XSDHTML/ch04.html]
section.

http://www.obj-sys.com/docs/acv63/XSDHTML/ch04.html
http://www.obj-sys.com/docs/acv63/XSDHTML/ch04.html

Chapter 2. Using the ASN2XSD command-
line tool

The ASN.1-to-XSD trandlation capability is available in both the ASN1C compiler and in a separate tool named
ASN2XSD. To generate XSD code using ASN1C, add -xsd to the ASN1C command-line or check the box in the
ASNI1C GUI wizard for generating an equivalent XSD file. The same result can be obtained by running ASN2XSD
directly. In both cases, options are available for customizing the generated XSD code. These are summarized below
for the ASN2X SD executable, but the same options can be used with ASN1C.

To test if ASN2XSD was successfully installed, enter asn2xsd with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

asn2xsd

Y ou should observe the following display (or something similar):
ASN2XSD, Version 6.4.Xx
ASN. 1 to XSD translation tool

Copyright (c) 2003-2011 Cbjective Systems, Inc. All R ghts Reserved.

Usage: asn2xsd <fil enanme> options

<fil enane> ASN. 1 source file nane
options:
-war ni ngs Qut put conpi | er warni ng messages
-0 <directory> Qutput file directory
-1 <directory> Import file directory
-li st Cenerate listing
-appinfo [<itens>] Cenerate applnfo for ASN. 1 itens

<itens> can be tags, enum and/or ext

ex: -appinfo tags, enum ext

default = all if <items> not given
-attrs [<itens>] Cenerate non-native attributes for <itenms>

<itens> is same as for -appinfo
-targetns [<nanespace>] Specify target nanmespace

<nanmespace> i s nanespace URI, if not given
no target nanmespace declaration is added
-tabl es Generate XSD code for table constraints
- st dout Qut put code to stdout
- xer Cenerate XSD code correspondi ng to XER encodi ng

To use ASN2XSD, at a minimum, an ASN.1 source file must be provided. The source file specification can be a
full pathname or only what is necessary to qualify the file. If directory information is not provided, the user's current
default directory is assumed. If afile extension is not provided, the default extension ".asn" is appended to the name.
Multiple source filenames may be specified on the command line to compile a set of files. The wildcard characters
“*'and "%' are also alowed in source filenames (for example, the command “asn2xsd *.asn’ will compile all ASN.1
filesin the current working directory).

Using the ASN2XSD command-line tool

The sourcefile(s) must contain ASN.1 productions that define ASN. 1 types and/or val ue specifications. Thisfile must
strictly adhere to the syntax specified in ASN.1 standard I TU X.680.. The deprecated X.208 standard is not supported
in ASN2X SD athough the ANY type from that standard is recognized.

The following table lists al of the command line options related to ASN.1 to XSD trandlation.

Option Argument | Description

-applnfo |tags enum|Thisoption instructs asn2xsd to generate an <appinfo> section within the generated X SD file
ext that contains additional ASN.1 specific information. This includes information about tags,
enumerated types, or extension types. The argument is optiona - if no argument is given
information is generated for all of these items. It is aso possible to specify multiple items
by using a comma-separated list (for example, -applnfo tags,enum).

-attrs tags enum|This option instructs asn2xsd to generate non-native attributes for elements within the
ext generated XSD file that contain additional ASN.1 specific information. This includes
information about tags, enumerated types, or extension types. The argument is optional - if
no argument is given information is generated for all of these items. It is also possible to
specify multiple items by using a comma-separated list (for example, -applnfo tags,enum).

-tables <filename>| Thisoptionisused to generate additional codefor the handling of table constraints as defined
in the X.682 standard. See the Generated Information Object Table Sructures section for
additional details on the type of code generated to support table constraints.

-l <directory> This option is used to specify a directory that the compiler will search for ASN.1 source
files for IMPORT items. Multiple -1 qualifiers can be used to specify multiple directories

to search.

-list None Generate listing. Thiswill dump the source code to the standard output device asit is parsed.
This can be useful for finding parse errors

-0 <directory> This option is used to specify the name of a directoryto which all of the generated files will
be written.

-pdu <typeNamebesignate given type name to be a " Protocol Definition Unit" (PDU) type. Thiswill cause a

C++ control classto be generated for the given type. By default, PDU types are determined
to be types that are not referenced by any other types within a module. This option allows
that behavior to be overridden. The **' wildcard character may be specified for <typeName>
toindicate that all productions within an ASN.1 module should be treated as PDU types.

-targetns |<URI> Specify URI for target namespace to be added to the generated XSD code. If this option is
omitted, no target namespace declaration is added.

-warnings |None Output information on compiler generated warnings.

-xer None Generate a schema corresponding to the XER encoding of the ASN.1

Chapter 3. ASN.1 to XML Schema
Conversion

The ASN1C compiler contains the capability of generating corresponding XML Schematype definitions from ASN.1
types. This capability is also present in afree online tool (ASN2XSD) that may be accessed via the following URL:

http://mww.obj-sys.com/asn2xsd.php [http://www.obj-sys.com/asn2xsd.php]

ASN.1 types are converted to XML Schema and ASN.1 values are converted to XML. ASN.1 value sets, which are
essentially a set of constraints, get converted to facetsin XML Schema.

Mapping of Top-Level Constructs

An ASN.1 module name is mapped to an XML schema namespace. ASN.1 IMPORT statements are mapped to XSD
import statements. The ASN.1 EXPORT statement does not have a corresponding construct in XSD.

The general form of the XSD namespace and import statements would be as follows:

<?xm version="1.0"7?>

<xsd: schena
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
t ar get Nanmespace="URL/ Modul eNane"

<l-- following Iine woul d be added for each inported nodul e nanespace -->
xm ns: | mport edModul eNane="i nport URL/ | nport edModul eNane"

el ement For mDef aul t ="qual i fi ed" >

<xsd: i nmport nanmespace="i nmport URL/ | nport edModul eNane"
schemaLocati on="I nport edMbdul eNane. xsd"/ >

In this definition, the items in italics would be replaced with text from the ASN.1 specification being converted or a
configuration file. The ModuleName and | mportedModuleName items would come from the ASN. 1 specification. The
URL and importURL items would be configuration parameters.

Mapping of ASN.1 Types

Note

This section decribes the mapping of ASN.1 typesto X SD types. The mapping presented here correspondsto
the XML encoding that ASN1C produces when using the -xml option. This is the default mapping followed
by ASN2XSD. This section is not relevant to XER encoding and therefore isirrelevant if you have specified
the -xer command line option for ASN1C or ASN2XSD.

Each ASN.1 typeis mapped to acorresponding XSD type. Some ASN.1 types have anatural mapping to an XSD type
(for example, an ASN.1 BOOLEAN type maps to an xsd:boolean type). In other cases, custom types were needed
because a natural mapping did not exist within XSD (for example, there was no direct mapping for an ASN.1 BIT-
STRING type). These custom types can be found in the low-level ASN.1 XML schema definitions library at the
following URL :

http: //mww.obj-sys.com/v1.0/ XML Schema/asnl.xsd

http://www.obj-sys.com/asn2xsd.php
http://www.obj-sys.com/asn2xsd.php

ASN.1to XML Schema Conversion

The following sections describe the mappings for each of the ASN.1 built-in types.

BOOLEAN

The ASN.1 BOOLEAN type is mapped to the X SD boolean built-in type.
ASN.1 production:

TypeNanme ::= BOCOLEAN
Generated XSD code:

<xsd: si npl eType nane="TypeNane" >

<xsd:restriction base="xsd: bool ean"/ >
</ xsd: si npl eType>

INTEGER

The ASN.1 INTEGER type is converted into one of several XSD built-in types depending on value range constraints
on the integer type definition.

The default conversion if the INTEGER value contains no constraints is to the XSD integer type:
ASN.1 production:
TypeNane ::= | NTEGER
Generated XSD code:
<xsd: si npl eType nanme="TypeNanme">
<xsd:restriction base="xsd:integer"/>

</ xsd: si npl eType>

If the integer has a value range constraint that allows a more restrictive XSD type to be used, then that type will be
used. For example, if arange of 0to 255 (inclusive) is specified, an XSD unsignedByte would be used because it maps
exactly to thisrange. The following table shows the range values for each of the INTEGER type mappings

L ower Bound Upper Bound XSD Type
-128 127 byte

0 255 unsignedByte
-32768 32767 short

0 65535 unsignedShort
-2147483648 2147483647 integer

0 4294967295 unsignedint
-9223372036854775808 9223372036854775807 long

0 18446744073709551615 unsignedLong

Ranges beyond "long" or "unsignedL ong” will cause the integer value to be treated asa"big integer”. Thiswill map to
an xsd: string type. An integer can also be specified to be abig integer using the ASN1C <isBiglnteger/> configuration
file setting.

ASN.1to XML Schema Conversion

If constraints are present on the INTEGER type that are not exactly equal to the lower and upper bounds specified
above, then xsd: mininclusive and xsd: maxinclusive facets will be added to the X SD type mapping. For example, the
mapping of "I ::= INTEGER (0..10)" would be done as follows:

1. Themost restrictive typewould first be chosen based on the constraints. In this case, xsd: byte would be used because
it appearsfirst on the list above.

2. Then the xsd: mininclusive and xsd: maxl nclusive facets would be added to further restrict the type.
Thiswould result in the following mapping
<xsd: si npl eType name="I1">
<xsd:restriction base="xsd: byte">
<xsd: m nl ncl usi ve val ue="0">
<xsd: max| ncl usi ve val ue="10">

</ xsd:restriction>
</ xsd: si npl eType>

BIT STRING

There is no built-in XSD type that corresponds to the ASN.1 BIT STRING type. For this reason, a custom type
was created in the ASN2XSD run-time library (asnl.xsd) to model this type. Thistype is asnl:BitString and has the
following definition:
<xsd: si npl eType name="BitString">
<xsd:restriction base="xsd:token">
<xsd: pattern value="[0-1]{0,}"/>
</xsd:restriction>
</ xsd: si npl eType>
The ASN.1 BIT STRING type is converted into a reference to this custom type as follows:
ASN.1 production:
TypeName ::= BI T STRI NG
Generated XSD code:
<xsd: si npl eType name="TypeNane" >

<xsd:restriction base="asnl:BitString"/>
</ xsd: si npl eType>

OCTET STRING

The ASN.1 OCTET STRING typeis converted into the XSD hexBinary type.
ASN.1 production:

TypeNane ::= OCTET STRI NG
Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd: hexBi nary"/>

ASN.1to XML Schema Conversion

</ xsd: si npl eType>

Character String Types

All ASN.1 character string useful types (IA5Sring, VisibleString, etc.) are mapped to the XSD string type.
ASN.1 production:
TypeNane ::= ASNlChar StringType

in this definition, ASN1Char SringType would be replaced with one of the ASN.1 Character String types such as
VisibleString.

Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

ASN.1 character string types may contain a size constraint. This is converted into minLength and maxLength facets
in the generated XSD definition:

ASN.1 production:
TypeNane ::= ASNlChar StringType (SIZE (Il ower. . upper))
Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd:string">
<xsd: mi nLengt h val ue="1 ower"/ >
<xsd: maxLengt h val ue="upper"/>
</ xsd:restriction>
</ xsd: si nmpl eType>

ASN.1 character string types may also contain permitted alphabet or pattern constraints. These are converted into
pattern facets in the generated XSD definition:

ASN.1 production:

TypeNane ::= ASNlChar StringType (FROM (charSet))
or

TypeNane ::= ASNl1Char StringType (PATTERN (pattern))
Generated XSD code:

<xsd: si npl eType nanme="TypeNane" >

<xsd:restriction base="xsd:string">
<xsd: pattern val ue="pattern"/>

</ xsd:restriction>
</ xsd: si npl eType

In this case, the permitted alphabet character set (charSet) is converted into a corresponding pattern for use in the
generated XML schema definition.

ASN.1to XML Schema Conversion

Time String Types
The ASN.1 GeneralizedTime and UTCTime types are mapped to the XSD dateTime type.
ASN.1 production:
TypeNane ::= ASNLTi meStri ngType
in this definition, ASN1TimeStringType would be replaced with either GeneralizedTime or UTCTime.
Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd: dateTi ne"/>
</ xsd: si npl eType>

ENUMERATED

The ASN.1 ENUMERATED type is converted into an XSD token type with enumeration items. The enumeration
items correspond to the enumerated identifiersin the type.

If the -attrs enum command-line option is specified and the enumerated items contain numbers (i.e do not follow the
standards sequence), then an asnl:value attribute is added to the type to allow an application to map the enumerated
identifiers to numbers. If an asnl:value attribute is not present, then an application can safely assume that the
enumerated identifiers are in sequentia order starting at zero.

ASN.1 production:
TypeNane ::= ENUMERATED (idl(vall), id2(val2), etc.)
Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd:token">
<xsd: enuneration nanme="idl" asnl:val ue="val 1">
<xsd: enunerati on nanme="i d2" asnl:val ue="val 2">
</ xsd:restriction>
</ xsd: si npl eType>

The asnl:value attributes added to the enumeration items above are an example of non-native attributes. These are
attributesthat are not defined within the XML Schemastandard but that may be added to provide additional information
about an element contained within the schema. Conformant XML schema processors should ignore these attributes.
They are only added to the generated code if the -attrs enum option is added to the ASN1C command-line (or -attrs
option with no qualifiers)

It is also possible to generate an "application information™" (appinfo) section within the generated schema containing
information on the enumerated values. This is done using the -appinfo enum option (or -appinfo with no qualifiers).
The generated code with <appinfo> would be as follows:

<xsd: si npl eType name="TypeNane" >
<xsd: annot ati on>
<xsd: appi nf 0>
<asnl: Enum nf o>
<asnl: Enum t em nane="i d1" val ue="val 1"/ >
<asnl: Enum t em nane="i d2" val ue="val 2"/ >

ASN.1to XML Schema Conversion

</ asnl: Enunl nf o>

</ xsd: appi nf 0>

</ xsd: annot at i on>

<xsd:restriction base="xsd:token">
<xsd: enuneration nane="idl">
<xsd: enunerati on nane="id2">

</ xsd:restriction>

</ xsd: si npl eType>

NULL

Thereisno built-in XSD type that corresponds to the ASN.1 NULL type. For this reason, a custom type was created
in the Objective Systems XSD run-time library (asnl.xsd) to model this type. This type is asnl:NULL and has the
following definition

<xsd: conpl exType nanme="NULL" final="#all"/>

Thisis anon-extendable empty complex type

OBJECT IDENTIFIER

There is no built-in XSD type that corresponds to the ASN.1 OBJECT IDENTIFIER type. For this reason, a
custom type was created in the Objective Systems XSD run-time library (asnl.xsd) to model this type. Thistypeis
asnl:Objectldentifier and has the following definition:

<xsd: si npl eType name="Cbj ectldentifier">
<xsd:restriction base="xsd:token">
<xsd: pattern val ue=
"TO-2]((\.[2-3]1?[0-9])(?2A.\d)*)?"/>
</ xsd:restriction>
</ xsd: si npl eType>

The pattern enforces the rule in the X.680 standard that the first arc value of an OID must be between 0 and 2, the
second arc must be between 0 and 39, and the remaining arcs can be any number. The ASN.1 OBJECT IDENTIFIER
typeis converted into a reference to this custom type as follows:

ASN.1 production:

TypeNane ::= OBJECT | DENTI FI ER
Generated XSD code:

<xsd: si npl eType nanme="TypeNanme" >

<xsd:restriction base="asnl: Objectldentifier"/>
</ xsd: si npl eType>

RELATIVE-OID

Thereisno built-in X SD typethat correspondsto the ASN.1 RELATIVE-OID type. For thisreason, acustom typewas
created in the Objective Systems XSD run-time library (asnl.xsd) to model thistype. Thistypeis asnl:RelativeOlD
and has the following definition:

<xsd: si npl eType nane="Rel ati vedQ D'>
<xsd:restriction base="xsd:token">

ASN.1to XML Schema Conversion

<xsd: pattern value="\d(\.\d)*"/>
</ xsd:restriction>
</ xsd: si npl eType>

Thisis similar to the OBJECT IDENTIFIER type discussed in the previous section except in this case, the pattern is
simpler. The arc numbersin aRELATIVE-OID are not restricted in any way, hence the simpler pattern. The ASN.1
RELATIVE-OID typeis converted into a reference to this custom type as follows:

ASN.1 production:
TypeNane ::= RELATIVE-O D
Generated XSD code:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="asnl: Rel atived D'/ >
</ xsd: si npl eType>

REAL

The ASN.1 REAL typeis mapped to the X SD double built-in type.
ASN.1 production:

TypeNane ::= REAL
Generated XSD code:

<xsd: si npl eType nanme="TypeNane" >
<xsd:restriction base="xsd: doubl e"/ >
</ xsd: si npl eType>

SEQUENCE

An ASN.1 SEQUENCE is a constructed type consisting of a series of element definitions that must appear in the
specified order. Thisisvery similar to the XSD sequence complex type and is therefore mapped to this type.

The basic mapping is as follows:
ASN.1 production:
TypeNane ::= SEQUENCE ({

el ement 1- name el enent 1-t ype,
el ement 2- nae el enent 2-t ype,

}
Generated XSD code:

<xsd: conpl exType nanme="TypeNanme" >
<xsd: sequence>
<xsd: el enent name="el enent 1- nanme
<xsd: el enent name="el enent 2- nanme

type="el enent 1-type"/ >

" type="el emrent 2- nane"/ >
</ xsd: sequence>

</ xsd: conpl exType>

10

ASN.1to XML Schema Conversion

SET

An ASN.1 SET is a constructed type consisting of a series of element definitions that must appear in any order. This
isvery similar to the XSD all complex type and is therefore mapped to this type.

The basic mapping is as follows:
ASN.1 production:

TypeNane ::= SET {
el ement 1- nanme el enent 1-type,
el ement 2- nane el enent 2-t ype,

}
Generated XSD code:

<xsd: conpl exType name="TypeNanme" >
<xsd:al | >

<xsd: el enent

<xsd: el enent

nane="el enent 1- nane"
nane="el enent 2- nane"

</xsd:al |l >
</ xsd: conpl exType>

type="el enent 1-type"/ >
type="el enent 2- nane"/ >

The rules for mapping elements with optional and default values to XSD that were described in the SEQUENCE

section above are a so applicable to the SET type.

SEQUENCE OF / SET OF

The ASN.1 SEQUENCE OF or SET OF typeis used to specify arepeating collection of agiven element type. Thisis
similar to an array type in a high-level programming language. For al practical purposes, SEQUENCE OF and SET
OF are identical. The remainder of this section will refer to the SEQUENCE OF type only. It can be assumed that all

of the defined mappings apply to the SET OF type as well.

The way the SEQUENCE OF typeis mapped to X SD depends on the type of the referenced element. If thetypeisone
of the following ASN.1 primitive types (or atype reference that references one of these types):

*+ BOOLEAN
* INTEGER
* ENUMERATED

* REAL

The mapping isto the XSD list type. Thisisalist of space-separated identifiers. The syntax is as follows:

ASN.1 production:
TypeNane ::= SEQUENCE OF El enent Type
Generated XSD code

<xsd: si npl eType name="TypeNane" >
<xsd:list itemlype="El enent Type">
</ xsd: si npl eType>

11

ASN.1to XML Schema Conversion

Thiswill be referred to as the simple case from this point forward.

If the element type is any other type than those listed above, the ASN.1 type is mapped to an XSD sequence complex
type that contains a single element of the element type. The generated X SD type also contains the maxOccurs (and
possibly the minOccurs) facet to specify the array bounds.

The general mapping of an unbounded SEQUENCE OF type (i.e. one with no size constraint) to XSD is as follows:
ASN.1 production:

TypeNane ::= SEQUENCE OF El enent Type
Generated XSD code:

<xsd: conpl exType nanme="TypeNane" >
<xsd: sequence maxQCccur s="unbounded" >
<xsd: el ement nane="El enent Type" type="El enent Type"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this definition, the element name is based on the name of the element type. The element typeisthe equivalent XSD
type for the ASN.1 element type.

As of the 2002 version of the ASN.1 standards, it is now possible to include an element identifier name before the
element type name in a SEQUENCE OF definition. This makes it possible to control the name of the element used in
the generated X SD definition. The mapping for this caseis asfollows:

ASN.1 production:
TypeNane ::= SEQUENCE OF el ement Nanme El enent Type
Generated XSD code:

<xsd: conpl exType nanme="TypeNanme" >
<xsd: sequence maxQCccur s="unbounded" >
<xsd: el ement nane="el enent Nane" type="El enent Type"/>
</ xsd: sequence>
</ xsd: conpl exType>

CHOICE

The ASN.1 CHOICE typeisused to specify alist of alternative elements from which asingle el ement can be selected.
Thistype is mapped to the X SD choice complex type. The mapping is as follows:

ASN.1 production:
TypeNane ::= CHO CE {

el ement 1- name el enent 1-t ype,
el ement 2- name el enent 2-t ype,

}
Generated XSD code:

<xsd: conpl exType nanme="TypeNanme" >
<xsd: choi ce>

12

ASN.1to XML Schema Conversion

<xsd: el ement nane="el enent 1- nane" type="el enent 1-type"/>
<xsd: el ement nane="el enent 2- nane" type="el enent 2- nane"/ >

</ xsd: choi ce>
</ xsd: conpl exType>t ypedef struct {

This is similar to the SEQUENCE and SET cases described above. The only difference is that xsd:choice is used
instead of xsd: sequence or xsd:all.

The CHOICE type cannot have elements marked as optional (OPTIONAL) or elements that contain default values
(DEFAULT) aswas the case for SEQUENCE and SET.

If the CHOICE type is extensible (i.e., contains an ellipses marker ...), a specia element will be inserted to alow an
unknown alternative to be validated. This element is asfollows:

<xsd: any nanmespace="##ot her" processContents="|ax"/>

This element declaration allows any additional elements from other namespacesto exist in a message instance without
causing avalidation or decoding error. Note the restriction that the element must be defined in a different namespace.
Thisisnecessary becauseif the element existed in the same namespace as other elements, the content model would be
non-deterministic. The reason is because avalidation program would not be able to determineif the choice aternative
element is a defined element or an extension element.

Open Type

An Open Type as defined in the X.680 standard is specified as a reference to a Type Field in an Information Object
Class. The most common form of this is when the Type field in the built-in TYPE-IDENTIFIER class is referenced
asfollows:

TYPE- | DENTI FI ER. &Type

A reference to an Open Type within a SEQUENCE or CHOICE construct is converted into an XSD any element type.
Note that the conversion is only done if the element isin one of these constructs. An open type declaration on its own
has no equivalent XSD type and is therefore ignore

An example showing how an open type might be referenced in a SEQUENCE type and the corresponding conversion
to XSD isasfollows:

SeqW t hOpenType :: = SEQUENCE {
anQpenType TYPE-| DENTI FI ER. &Type
}
Generated XSD type:

<xsd: conpl exType name="SeqWt hOpenType" >
<xsd: sequence>
<xsd: any/ >
</ xsd: sequence>
</ xsd: conpl exType>

In this case, any valid XML instance can be used in the type. Note that the ASN.1 element name (anOpenType) is
ignored.

If the open type is bound a by arelational table constraint and -tables was specified on the command-line, an XSD
choice is created that contains all of the possible types that may appear in the field. This is further described in the
section on mapping items from table constraints.

13

ASN.1to XML Schema Conversion

Tagged Type

In ASN.1, it is possible to create new custom types using ASN.1 tag values as identifiers. These identifiers are built
into BER or DER encoded messages. In general, these tags have no meaning in an XSD representation of an ASN.1
type that is used to create or validate XML markup. However, if the schemadefinition isto be used to generate aBER
or DER instance of atype, the tag information will be required. For thisreason, it is possible to add either non-native
attributes or an application information annotation (appinfo) to the generated X SD type describing the ASN.1 tags.

The annotation carries al of the information an application would need to know to encode a BER or DER message of
the given type. Thisincludes the tag's class, identifier number, and how it is applied (IMPLICIT or EXPLICIT). The
type that specifies thisinformation is the asn1:Taglnfo type in the Objective Systems XSD class library.

For the non-native attributes case (specified by adding -attrs tags or -attrs with no qualifiersto the ASN1C command-
line), the mapping of an ASN.1 tagged type to XSD is asfollows:

ASN.1 production:
TypeNane ::= Tagging [Tagd ass Tagl D] ASNlType
Generated XSD code:

<xsd: conpl exType name="TypeNanme" asnl:tag="[TagC ass Tagl D"
asnl:taggi ng="EXPLI Cl T">
equi val ent XSD type mapping for ASN1Type

</ xsd: conpl exType>

For the applnfo case (specified by adding -appinfo tags or -appinfo with no qualifiers to the ASN1C command-line),
the mapping is as follows:

<xsd: conpl exType nanme="TypeNanme" >
<xsd: annot ati on>
<xsd: appi nf 0>
<asnl: Tagl nf o>
<asnl: Tagd ass> TagC ass </asnl: TagCd ass>
<asnl: Tagl D> Tagl D </ asnl: Tagl D>
<asnl: Taggi ng> Taggi ng </asnl: Taggi ng>
</ asnl: Tagl nf o>
</ xsd: appi nf 0>
</ xsd: annot at i on>
equi val ent XSD type mapping for ASN1Type
</ xsd: conpl exType>

Tagging in the definition aboveis optional. If present, it is equal to either the keyword EXPLICIT or IMPLICIT. The
default valueisEXPLICIT. A default valuefor all typesin amodule can also be specified in the ASN.1 modul e header.

Thetag'sform (constructed or primitive) isnot specified in the mapping above. Thisis because this can be determined
by an application that is encoding or decoding a message of the given type.

EXTERNAL and EmbeddedPDV Type

The EXTERNAL and EmbeddedPDV types are built-in ASN.1 types that make it possible to transfer a value of a
different encoding type within an ASN.1 message. These are constructed typesbuilt into the ASN.1 standard. An XSD
representation of each of these typesis available in the asnl.xsd library. The ASN1C compiler generates a reference
to the typesin the library when it encounters a reference to one of these types.

14

ASN.1to XML Schema Conversion

ASN.1 production:
TypeNanme ::= EXTERNAL
Generated XSD code:

<xsd: conpl exType name="TypeNane" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="asnl: EXTERNAL"/ >
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

ASN.1 production:
TypeNane ::= EMBEDDED PDV
Generated XSD code:

<xsd: conpl exType nanme="TypeNane" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="asnl: EnbeddedPDV'/ >
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Elements with Table Constraints

ThelTU-T ASN.1 X.681 and X.682 standards specify atable-driven approach for the assignment of constrained values
to open types within a specification. These constraints are known as "table constraints’ and utilize Open Type, Class,
Information Object and ObjectSet definitions. Elementswithin typesthat are constrained in thisway result in aspecial

mapping to be done. Thisis only done when the -tables option is specified.

ASN.1 type definitions can be created that reference class fields and that are constrained by objects defined within an
Information Object Set. The XSD mapping for these types contain normal element declarations for fixed type value

fields and special "open type" elementsfor typefields.

The special open type elements will reference an anonymous <choice> complexType that will contain an alternative
for each of the type fields listed in the referenced information object set that are allowed for the type.

The basic mapping is as follows:
ASN.1 Definition:

TypeNane ::= SEQUENCE {

el ement 1- nane Fi xedTypeFi el dRef ({Tabl eConstraint}),
el ement 2- nane Fi xedTypeFi el dRef ({Tabl eConstrai nt}{@ey}),
el ement 3- nanme TypeFi el dRef ({Tabl eConstraint}{@ey}),

}

Any combination of fixed type and type fields can be contained within the type definition.

Generated XSD code:

<xsd: conpl exType nanme="TypeNanme" >

15

ASN.1to XML Schema Conversion

<xsd: sequence>
<xsd: el ement nanme="el enilNanme" type="Fi el d1Type"/>
<xsd: el ement nanme="el enPName" type="Fi el d2Type"/>
<xsd: el ement nane="el enBNane" >
<xsd: conpl exType>
<xsd: choi ce>
<xsd: el ement nanme="i nf oObj ect Name" type="1nfoCbj ect Type">

</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el enment >
</ xsd: sequence>
</ xsd: conpl exType>

In this case, the fixed type field types are obtained directly from the class definition. The type field is a reference to
the generated open type field. The generated <choice> container type contains all of the possible elements allowed
by the table constraint for the open type field.

Example

This example is from a modified version of the 3GPP NBAP ASN.1 specification. Thsi protocol makes heavy use of
classes, information objects, and information object sets.

One example of thisisthe NBAP InitiatingMessage type which is defined is as follows:

Initiati ngMessage ::= SEQUENCE {
pr ocedur el D NBAP- ELEMENTARY- PROCEDURE.
&pr ocedur el D ({ NBAP- ELEMENTARY- PROCEDURES}) ,

criticality NBAP-ELEMENTARY- PROCEDURE.
&criticality ({NBAP-ELEMENTARY- PROCEDURES}{ @r ocedurel D}),

nmessageDi scri ni nat or NBAP- ELEMENTARY- PROCEDURE.
&ressageDi scri m nat or ({ NBAP- ELEMENTARY- PROCEDURES} { @r ocedur el D}),

transacti onl D Transacti onl D,

val ue NBAP- ELEMENTARY- PROCEDURE.
& nitiati ngMessage ({NBAP- ELEMENTARY- PROCEDURES} { @r ocedur el D})

}

A simplified version of the NBAP-ELEMENTARY -PROCEDURES information object set that defines the contents
of some of the element fields is as follows:

NBAP- ELEMENTARY- PROCEDURES NBAP- ELEMENTARY- PROCEDURE : : = {
radi oLi nkSet upFDD |
radi oLi nkSet upTDD,

}
The NBAP-ELEMENTARY -PROCEDURE classis defined as follows:
NBAP- ELEMENTARY- PROCEDURE : : = CLASS {
& nitiatingMessage,
&Successf ul Qut cone OPTI ONAL,

16

ASN.1to XML Schema Conversion

&Unsuccessf ul Qut cone OPTI ONAL,

&Qut cone OPTI ONAL,
&ressageDi scri m nat or MessageDi scri nmi nat or,
&procedurel D Procedurel D UNI QUE,
&criticality Criticality DEFAULT ignore

}
W TH SYNTAX {
I NI TI ATI NG MESSAGE & nitiati ngMessage
[SUCCESSFUL OUTCOVE &Successf ul Qut cone]
[UNSUCCESSFUL OUTCOVE &Unsuccessf ul Qut cone]
[QUTCOVE &Qut cone]
MESSAGE DI SCRI M NATOR &mressageDi scri m nat or
PROCEDURE | D &pr ocedur el D
[CRITI CALI TY &criticality]
}

Finally, the information objects that are referenced in the information object set are as follows:

-- *** Radi oLi nkSetup (FDD) ***

radi oLi nkSet upFDD NBAP- ELEMENTARY- PROCEDURE : : = {
I NI TI ATI NG MESSAGE Radi oLi nkSet upRequest FDD
SUCCESSFUL OUTCOVE Radi oLi nkSet upResponseFDD
UNSUCCESSFUL QUTCOME Radi oLi nkSet upFai | ur eFDD
MESSAGE DI SCRI M NATOR commopn
PROCEDURE | D { procedureCode id-radioLi nkSetup, ddMode fdd }
CRITICALITY reject

}

-- *** Radi oLi nkSetup (TDD) ***

radi oLi nkSet upTDD NBAP- ELEMENTARY- PROCEDURE : : = {
I NI TI ATI NG MESSAGE Radi oLi nkSet upRequest TDD
SUCCESSFUL OUTCOVE Radi oLi nkSet upResponseTDD
UNSUCCESSFUL QUTCOME Radi oLi nkSet upFai | ur eTDD
MESSAGE DI SCRI M NATOR common
PROCEDURE | D { procedureCode id-radioLinkSetup, ddMvbde tdd }
CRITICALITY reject

}

After working through the various layers, ASN2XSD is able to produce an XSD definition that provides fixed type
references for the procedurel D, criticality, and messageDiscriminator elements. An anonymous choice is produced
under the value element that defines all of the types that may be used in the open type eleemnt. This is the resulting
XSD definition:

<xsd: conpl exType name="lnitiati ngMessage" >
<xsd: sequence>
<xsd: el ement nane="procedurel D' type="NBAP- CormonDat aTypes: Procedurel D'/ >
<xsd: el ement nanme="criticality"” type="NBAP-CommonDataTypes:Criticality"/>
<xsd: el ement nanme="messageDi scrim nator" type="NBAP- ConmonDat aTypes: MessageDi scr
<xsd: el ement nanme="transacti onl D' type="NBAP- CoomonDat aTypes: Tr ansacti onl D"/ >
<xsd: el ement nane="val ue">
<xsd: conpl exType>
<xsd: choi ce>
<xsd: el ement nane="r adi oLi nkSet upFDD" type="NBAP- PDU- Cont ent s: Radi oLi nkS
<xsd: el ement nane="r adi oLi nkSet upTDD" type="NBAP- PDU- Cont ent s: Radi oLi nkS
</ xsd: choi ce>

17

ASN.1to XML Schema Conversion

</ xsd: conpl exType>
</ xsd: el enment >
</ xsd: sequence>
</ xsd: conpl exType>

18

Chapter 4. XML Schemato ASN.1
Conversion

The version 5.8 release of ASN1C contains a separate command-line utility program that translates an XML Schema
Definitions (XSD) source file into an equivalent ASN.1 source file. This conversion process is based on the ITU-T
X.694 standard which specifies a mapping from XSD to ASN.1.

The mapping specified in the standard consists of two parts:
1. A mapping of XSD elements, types, and attributes to equivalent ASN.1 items, and

2. Theaddition of "extended-XER" (E-XER) annotationsto allow the ASN.1 sourcefileto act asa stand-alone schema
for usein both XML and ASN.1 applications.

The ASNIC trandation process supports only the first item at this time. The main goal of the trandation processis
to get the XML schemainto a form that allows the generation of efficient binary encoders/decoders that utilize the
ASN.1 encoding rules. Option 1 supportsthisgoal by creating an ASN.1 filethat can be used with any ASN.1 compiler
product or tool that supports standard ASN.1 syntax.

It should also be noted that the trandation process of going from ASN.1 to XSD described in the previous section is
not "round-trippable” with the XSD to ASN.1 process described in this section. That is to say, one cannot start with
an XSD file (for example) and translate it to ASN.1 using thistool and then translate that file back to X SD and expect
thefinal XSD fileto be the same asthe original . Certain naming conventions that are utilized make this type of round-
trip conversion process very problematic. It istherefore aone-way process - auser must work either in XSD or ASN.1
and then use the tools to get an equivalent representation in the alternative form.

Running the XSD-to-ASN.1 Translation Tool
from the Command-line

The XSD-to-ASN.1 trandlation tool is the xsd2asnl utility program that can be found in the bin subdirectory of an
ASNIC installation. To test if the compiler was successfully installed, enter xsd2asnl1 with no parameters as follows
(note: if you have not updated your PATH variable, you will need to enter the full pathname):

xsd2asnl
Y ou should observe the following display (or something similar):

XSD2ASN1, Version 0.2.x
Copyright (c) 2005 Objective Systenms, Inc. All R ghts Reserved.

Usage:
xsd2asnl <fil enane> options

<filename> XML schema or WSDL source file name(s). Multiple filenames may be specified. * and ? wildcards are
allowed.

options:
-config <file> Specify schema bindings file

-0 <directory> Qutput file directory
-1 <directory> Inport file directory

19

XML Schemato ASN.1 Conversion

-all Conpile all dependent files
-war ni ngs Qut put conpil er warni ng nmessages

The XSD source file specification can be a full pathname or only what is necessary to qualify the file. If directory
informationisnot provided, the user's current default directory isassumed. Multiple source filenames may be specified
on the command line to compile a set of files. The wildcard characters ™*' and *? are also allowed in source filenames
(for example, the command “xsd2asnl *.xsd' will translate all XSD files in the current working directory to ASN.1).

Thefollowing table lists al of the command line options supported in this version of the tool.

Option Argument Description

-all None This option is used to specify that all
dependent files should be trandated
to ASN.1 as well as the main file
being compiled. Thisincludesal files
included using XSD <include> and
<import> directives.

-config <filename> Thisoptionisused to specify the name
of a file containing configuration
information for the source file(s)
being parsed. A full discussion of
the contents of a configuration file is
provided inthe XML SchemaBinding
File section.

-l <directory> This option is used to specify a
directory that the compiler will search
for ASN.1 source files for IMPORT
items. Multiple -1 qualifiers can be
used to specify multiple directoriesto
search.

-0 <directory> Thisoptionisusedto specify thename
of a directory to which al of the
generated files will be written.

-warnings None Output information on compiler
generated warnings.

XML Schema Binding File

The schemabindingsfileisan XML filethat allows customizations of certain aspects of the XSD-to-ASN.1 tranglation
process. It is different from command-line switches in that it provides a way to associate configuration items with
specific XSD information items within a schema or set of schemas.

For this release of XSD2ASN1, the only useful configuration item that can be specified is the location of individual
source files for schemas included using the <xsd:include> and <xsd:import> declarations. These declarations allow
a schemal_ocation attribute to be specified, but this attribute does not necessarily have to contain a full path to the
referenced file (it is described in the standard as only providing a hint for a schema processor to help in locating the
file). Since third-party schemas cannot always be editied by devel opers, the schema binding file provides amechanism
to bind the file location information to the schema without requiring edits to the original schema.

At the outer level of the schema binding file is a <bindings> element. This is a container element that holds all of
the binding elements for specific schemas. There can be one and only one <bindings> element in a schema bindings
file. This element contains a mandatory "version” attribute that specifies the verion of the schema binding language

20

XML Schemato ASN.1 Conversion

in use. For this version of XSD2ASN1, the only supported version is 1.0. Therefore, the outer level of the schema
bindings file will always look like this:

<bi ndi ngs version="1.0">
specific binding elenments here .
</ bi ndi ngs>

The only element supported below the <bindings> level isthe <schemaBindings> element. Thisallowsthe association
of configuration items with a specific schema. The schemais specified using the namespace attribute which identifies
the schema using its target namespace.

The actual location of an include or import file can then be specified using the binding file <sourceFile> element. The
content of this element is the full or relative pathname to the schema file on a local computer (access to a web URI
is not supported at thistime).

As an example, suppose a schema contained the following import directive:

<xsd:inmport nanespace="http://exanpl e.com /I nportEl ement"
schemaLocati on="al nport El ement . xsd"/ >

It is possible to specify a different path for the almportElement.xsd file if it did not reside in the current working
directory using aschemabinding file. Assumeit waslocated in the c:\importSchemas directory. The binding filewould
be as follows:

<bi ndi ngs version="1.0">
<schemaBi ndi ngs nanespace="http://exanpl e.conf /| nportEl enent">
<sourceFil e>c:\i nport Schenas\ al nport El enent . xsd</ sour ceFi | e>
</ schemaBi ndi ngs>
</ bi ndi ngs>

XSD-to-ASN.1 Information Item Mappings

All XSD to ASN.1 information item mappings are as specified in the ITU-T X.694 standard, a free copy of which is
available at the following URL :

http://www.itu.int/I TU-T/studygroups/com17/languages/X 694pdf

Theonly non-standardized item isthe module name used for the generated ASN.1 module. X SD2ASN1 assignsmodule
name as follows:

1. It will attempt to use the last delimitted item at the far right in the target namespace declaration. For example,
if the target namespace URI is "http://foo/bar”, "Bar" will be used as the module name (note the first letter was
capitialized as per X.694 naming rules)

2. If the target namespace is not in a standard URI format or if the last delimitted name contains special chanracters
or isvery long, then the name of the original XSD source fileis used.

21

