objective
SYSTEMS, INC.

XBinder

XML Schema Compiler
Version 2.6

C/C++ Users Guide
Reference Manual

Objective Systems, Inc. — July 2018

The software described in this document is furnished under a license agreement and may be used only in accor-
dance with the terms of this agreement.

Copyright Notice

Copyright ©1997-2018 Objective Systems, Inc. All rights reserved.

This document may be distributed in any form, electronic or otherwise, provided that it is distributed in its entirety
and that the copyright and this notice are included.

Author’s Contact Information
Comments, suggestions, and inquiries regarding XBinder may be submitted via electronic mail to info@obj-
sys.com.

Table of Contents

D =] oo (= g @Y= RV PP UP PP PPPPPTTRPPIN 1
2. USING XBINAEN ...ttt e ettt e et e e et b e e et e e et a b e e e aa s 2
Running XBinder from the Command-ling ... 2
Compiling and Linking Generated COUEuiiiirtieieii ettt 12
Porting Run-time Code to Other PlalfOrmScoouuiiiiiii e e 13
Getting Started with C or C++ Sample Programscoeuueuiieii e 14
Getting Started with your own XML SChemauuiiiiiiiiiii e 15
3. Generated C/CHt SOUCE COURcceetiieeiii ettt e et e et e e et eeeeba s 17
HEAOEN (1) FILE et e e et et et e e e e e e e eea bbb e e e aaaeenes 17
C Code Generated fOr XSD TYPES . .cevtuieiiiti ettt ettt ettt e e ettt e e et e et et e e e e et e eeeeba e e eeetaaaeeees 17
C Code Generated for XSD GIobal EIEMENEScovuieiiiiiiei et 18
C Code Generated for Project-level Factory Decode/Validation FUNCHiONocovvviviiiiiiiiiiiieiieeen, 19
C Code Generated for WSDL Operation INput/Output/Fault TYPESuveiiiiiieeieiiieeeeie e 20
C++ Code Generated fOr XSD TYPES ...ttt ittt ettt ettt e e et e e e et e e e enb e eeens 21
C++ Code Generated for XSD Global EIEMENtSuiiiiiiiiiiii e 22
C++ Code Generated for Project-level Factory Decode/Validation FUNCtionovvvveviiiiiiiinneennn, 23
C++ Code Generated for WSDL Operation Input/Output/Fault TYPEScccuvuieiiiiiieeiiiiiieeeei e 25
C++ Code Generated for WSDL Operation INput/OULPUL/FaLITcovvueieiiiiiiieeiiii e 27
NaMESPACE CONSIAEIBIIONS ... ceeeet ettt ettt e et e et ettt ettt e et et e e e e ab e e e eraa s 29
4. XSD Simple Type to C/CH+ TYPE M@PPINGS -..evvueeeettieeeitt e eeti e e et e e e eat e et eat e e e eet e e eeat e eeenenaeaees 31
&g = o S 1o [Y o= PP ST PRSPPI 32
ENUMEIAEEA Ty ..ttt e ettt e et et e e ettt e e ettt e e e e e et r e et erb e e e enb e aees 34
Fp1e=o = O Y o= TP PR PRI 36
REBI NUMDES TYPIES .t ieiit ettt ettt ettt ettt e ettt e e ettt e et et b e e et eab s e e e enb e e e eentnaeeees 37
g S T oo I Y o= PO P TP PTT 38
Dynamic Case (N0 1ength faCet):o i 39
Static Case (length restricted t0 32K OF 18SS): ..uuuiiiiiiiici e 40
D= o T 4T Y o= PP P PR UPPPT 40
2 Tolo] = I Y/ o= T PP P PP UPPPPTPRPPPPIN 41
16T o0 T Y oL ST T PSPPSR 41
I ES B Y o PP UPPPPT 43
UNDOUNDEA CBSE ...ttt sttt ettt ettt ettt et e e e et r et e et e et e eaa e et e nba e eeennes 43
BOUNOEH CBSE ...ttt et ettt e e et e e ettt e et et e e e 44

5. XSD Complex Type to C/CH+ TYPE MaADPINGS ... eeeerneeetetia e ettt e et e et e et e et et e e e e e e e e enaes 46
SEQUENGCE ...ttt e e et ettt bbb e e e e e e e et et s bbb e e e e e et e ee bbb e e e e aaaaeene 46
OPLIONEL ETEMENESeeitiee ettt ettt ettt ettt e e e et e e e ab e e e b 47
REPEALiNg EIBMENTSoee e 48
NTHBDIE ETBMENESceeeteeeeeet ettt e e et e e e e e e ab e e e enan s 50
N s o I Y o= S PP PPPPTT 52

ANY ELBIMENT ...ttt ettt 53

I TSP 54
10! [0 1 PSSP USSUPPUPPPTN 54
Generated C+ GEt/SEt MELNOAScieeiieeiii e 56
SUDSITULION GOUDS ... eeeeti ettt sttt e ettt ettt e ettt e et ettt e et ettt e et e sb s e et eab e e e eeebn e e eeenbnaaeeee 58
ATITTDULES <.ttt e et e et e et e et naas 60
L600] 071011 (@0 1 11= o | TP PPPPTPRPUPPPTN 61
E1EMENT EXTENSION ..ottt ettt e e et ettt e e e et e e n e e aaans 61
ATITDULE EXTENSION ...oeeiii ettt 65
RESIICHIONS ... et ettt ettt ettt e et a e e e e e anan s 66
SIMPIECONTENT ...ttt ettt e e et e ettt e e ettt r e e et et r e et e et e e et eb e e e e rb e e e ra s 66
EXEENSIONS ...ttt e e 67

XBinder C/C++ User's Guide

[LSS 1 o1 o PSP 67

[1Y 0] LS 68
L] (01 o PPN 69
N 1Y 1/ < PP PRPRPRP 69
LS @do a1 T 0] = o) I T = 71
[T o T =g o 0 = 1= P 71
(23T aTo Mol D= o= o 71
VErSION AHIULE ... e e e e e a s 71
Configuration File Language OVEIVIEWuiiiiiiiiiiieiiie e e e e e e e e et e et e et e e e e aanas 72
Global <bi Ndi NS> DEClarationcocuiiiiiiiiii e e e e e e e e e 72
<schemBaBi Ndi NGS> DECIarationcc.eeiiiiiiiii e e e e e e e ees 73
<N0deBi NAi NGS> DECIAratioNccuuuiiiii i e e e e e e e e ean e eaes 75

VA0 1Y a0= Lo B L= =T o) o 76
Advanced XML NameS TransfOrMBEIONuuuieieriiieeiiii et e et e e et e e et e e eet e e eetnaeeeaennes 77
XML Numeric Values Format SPeCITiCaIIONccuuiiiiiiiiii e e e e 77
Configuration FIle EXAMPIEcouniii e e e 78
7. Generated C ENcode/DeCOE FUNCHIONSiiiiiiieiiii ettt e e e e e e et e e e e 80
Preparing C Data Variables for ENCOOINGcocvuiiiiiiiiii e e e e e e e e 80
DynamiC MemMOry ManaQEMENLceuuneeiieiei et e et e e et e e et e e s e e et e e et e e et s esaaeean e eatneeeanaaees 80
Populating Generated Sructure Variables for ENCOdingccvoviviiiiiiiiiiiiiiccieceeec e, 80
Accessing Encoded Message COMPONENESuuiiruieiiieeiieeieeeeee e e eatneeete e st e sataeesanaaaanaes 82
Generated XML ENCOUE FUNCHIONSuiiiiiiiiee i ettt e e et e e e eat e e e eatn e eeenes 82
Generated C Function Format and Calling Parametersc.oveiiiieiiiieiii e 82
Generated C Encode Functions for Global Elementsoviiiiiiiiiiiiiiiieiecee e 83
Generated C Encode Functions for WSDL OperationsScceuuieiiiieiiieeiiieeiinesineesineeenneesnnnns 84
Generated C Encode Functions for DOM ENCOAINGccuuiiiiiiiiiiiiiiii e eeeee e e 84
Procedure for Calling a Generated C Encode FUNCEIONcooviiiiiiiiiiiieii e, 84
Generated XML DeCOTE FUNCLIONSuuiiiiiiiieeiiii e et e et e et e e e e e et e e e et e e e et e e e eeenes 87
Pull-Parser Based DeCOE FUNCLIONSccuuueeiiiiieeiiii e e eeii e e eeii s e e ettt e e eeat s e e eeaen s eeeesenaeeees 87

SAX Based DECOUE FUNCLIONSuuiiiiiiiiieieiie ettt e e et e e e e e e e 90
Procedure for Calling C Decode FUNCHIONSccuuniiiiiiciie e 92
Generated Validation FUNCHIONScuuiieiiii e e et e e e et s e e e eataeeeeaenaeeaees 95
Procedure for Calling C Validation FUNCLIONSiiiiiiiiiii e e 96
Generated Print FUNCLIONSiiiiii it e e e et e e et e e e et e e e e et e e e e eannas 97
(€1 gTc s = == o (o PP 98
Generated Identity Constraint TESt FUNCHIONSiiiiiiiiieeiie e e e e e e e e e e e e e e e e eaa e eees 99
Generated Reader and WITEr PrOgIraMS ... cvuuu it ecii e e e e e e e e e e et e e e e e et e e e aaeeannaees 100
Generated WSDL SOAP StUB FUNCHIONSvuuiiiiiieccc et e e 101
Generated WSDL SOAP Skeleton Server and Client Programsc.ovvveveeiiiieiiiieciieeen e e 101
Generated SSL SIUD FUNCLIONSuuiiiiiie e e e et e e e e 102
Generated SSL ClENt PrOgramSciiu i e e e e e e e e e e e e e et e e et e e e e e an e e et eeeanaaes 102
Other Generated FUNCLIONSciiuiiiei e e e e e e e e et e e e et e e e e aan e eas 102
INItIAliZAtON FUNCLIONS ...vtiiici e et e e et e e e 103
MEMOrY Free FUNCHIONS .. c.ueiiii e e e e e e r e e e e e aa s 103

[[o1 T g Tox o) 104
GeNErated MaKEFIIE ...t aanan 104
8. Generated CH++ Class MEINOUSiiiiiiiicc e e e e as 105
Preparing C++ ObJects for ENCOTING ... ccvuiiiiiieiii e e e e e e e e e e e e e e e e e eanees 105
Dynamic MemOry ManaQEMENLceuueeitieeiiee e e e e e e e e e e et e e et e e st s e eatneesan e e et e eaneeanaeaen 105
Populating Generated Class Instances for ENCOAINGccuuviiiiiiiiiiiiii e eee e 107
Generated XML CH+ ENCOUE MEINOUScovvviiiiiiiie e e e s 109
Generated Method Format and Calling Parametersco.oveviii i 109
Generated C++ Encode Methods for Global Elementscoovvviiiiiiiiiiiiici e 110
Generated C++ Encode Methods for WSDL OperationSccuuveviiieiiiieiiiieeiieeeeeeeeeaieeaens 110

XBinder C/C++ User's Guide

Procedure for Using the Generated C++ Encode Methodcccoiiiiiiiiiiiiiin e, 110

Generated XML CH+ Decode MEthOUScoovuiiiiiiiiiiic e 112
Pull-Parser Based Decode MethOOSocoviuiiiiiiiiiieeee e e 112

SAX Based DeCOUE MELNOUScciviiiiiiiiii e et e e e e e eat e e e 113

Generated C++ Method Format and Calling Parameterscoooeveeeiiiiiiiii i 113

Procedure for Calling C++ Decode MethOSoeiiiiiiiiiiiii e e 114

Generated XML C++ Vaidation MethoaScooevuiiiiiiiiieii e 116
Generated C++ Method Format and Calling Parameterscoooevieeiiiciineiie e 116

Procedure for Calling C++ Validation MEthodscoooiiiiiiiii i 116

9. XBinder C RUNLIME LIDIarycoouiiiic e e e e e et e e e eaes 118
10. XML RUN-time Library FUNCLIONSiiiiici e e e e e e e e e et e e et e e e e eeas 119
XML C ENCOOE FUNCLIONSvtieiiiiiieeeeie ettt e et e ettt s e e et e e e e et e e e eaan e eeennns 119
XML C Pull-Parser Based DeCOde FUNCLIONSiiiiiiiiiiiiii et e e e e eeeai e eees 120
XML C SAX Based DeCOUE FUNCLIONSuuuiiiiiiiiee it e e e et e et e e e e e e et e e e eat e e e eaanneeeees 121
XML C SAX Parser INEEITACEcuuieiieii ettt e e e e e eaa s 121

[o) PR 121

T 7= | PSP 122

oo = = PSP SUPPT 122

XML C DOM INEEITACE ..ovvtnieeeiii ettt ettt e et e e e et e e e et e e e et e e e e et e e eeananns 122

11. JSON Run-time Library FUNCHIONScouuiiii e e e e et e e e e e e eaaas 123
JSON C ENCOUE FUNCLIONScieeti ettt et e et e e e et e e e et e e e et e e e e et e e e e eta s 123
JSON C DECOUE FUNCHIONS ...ttt sttt e e e e et e e e e n e e e et e e e et e eeennnns 124

12. C Common RUNEIME LIBraryooiiniii i e e e e e e e e e e eens 126
CommMON INCIUAE FIIESuuiiiiii e e e et e et e e e et e e e eat e eeens 126

(01 Y £S] 1)Y/ 0= o TP 126

01 (Oo 1 1114700 T o PP 127

01 (O0] 1112 o PR 127

Context ManagemeNt FUNCHIONSo.uciiiie e e e e e e e e e e e et e e et e e s e e e san e e aaneeeanaas 128
Memory Management FUNCHIONScuuuiiii e e e e e e e e e e e e e st e e e e e et e e st e eanaee 128

High Level Memory Management APl ..o 129

Low Level Memory Management APloouiiiiiiiie e e e 131

LU I] o U o 131
Doubly-Linked List Utility FUNCEIONSciuuiiii e e e e e e e e e e e e e e ees 131
Error Formatting and Print FUNCLIONSiiiiiiiiiiciie e e e e e e e e e eeas 132
DiagnoStiC trace FUNCLIONSciveiii e e e e e e e e e e e e e et eean e e et e e eaneeeees 132
Input/Output Data Stream ULility FUNCHIONScoiuiiiiii i e e e 132
TCP/IP or UDP socket Utility TUNCHIONSiiiieiii e e e e et e e e e 133
SOAP and HTTP Utility FUNCHIONSiieiii e e e e e e e e e e een 133

13. C++ BUIlt-iN RUNEIME ClASSES ...iivviiiiiiii ettt e e e et e e et e e e et e e e e et 135
Context ManageMENt Classuuiiii e e e e e e e e e e e et e e e et e e et e e e eaas 135

M ESSAYE BUIFEr ClaSSES .. iuuiiiiiiiiii e et e e e e e e e e e e e e et e e et e e et e e e e eaenas 135
Global EIeMENt BASE ClaSSvuuiiiiiiiiieiiii e ettt e et e et s e et s e ettt e e et n e e e et n e e e aat e e e et e aeenans 136

XSD TYPE BASE ClaSSES .. cvvuiiiiiieiii ettt et e e e e e e e et e e e e e e e e e et e e e e et e e et e e eanaeeees 136
XML Parser INtErfaCe ClIaSSEScuuuuiiiiiiieiiii ettt sttt e et e e e et e e e et e e eaenn s 137

F N = 1] 0o L= gl (o) B 0o (= PP 138
General RUNIME EITOr IMESSAgESvvueiii et ee et e e e e e e e e e e e e e et e e et e e et e e e e e e e et e e et e eeanaas 138
XML-SPECITIC StAUS MESSAGES ...c.vuiiieeeiiiieeii et e et e et e e e e e e e e e e et e e et e e et e et e e et e e et reeanaeeennas 143

List of Tables

4.1. Generated C code

R €1 g TC it (0 B O e o o (< ST

Vi

Chapter 1. XBinder Overview

The XBinder code generation tool translatesan XML Schema Definitions (XSD) or Web Services Definition Language
(WSDL) sourcefileinto computer language C, C++, Java, or C# sourcefiles. These source files contain an application
programming interface (API) that allows programatic data to be encoded to XML format and decoded to programatic
variables. Each variableis of atype that corresponds to atype, element, or attribute defined within the XML schema
document.

Thismanual discusses C/C++ code generation. Java and C# code generation are documented in the XBinder Java/C#
User's Manual.

Each XSD or WSDL source file results in the generation of the following C/C++ language files

» Aninclude (.h) file containing C typedefs or C++ classes that represent each of the X SD types and global elements
contained within the XSD source file, or the XSD types and WSDL operation input/output elements contained
within the WSDL source file, and

» Multiple C/C++ source (.c/.cpp) files containing encode, decode, validation, and utility functions. One encode and
decode function is generated for each X SD type. Utility functions may be generated for a given type or element to
initialize, print, or generate test data.

» An optional makefile to build the generated code.

Thesefiles, when compiled and linked with the XBinder run-time encode/decode function library, provide acomplete
package for working with XML encoded data

C
Header (.h})
File

N/

XML " c
Sg‘é,hu"','.}ga umi) XBinder uu} Source (.c)
File Files

§

H

{

§

:-) Makefile

XBinder is compliant with the 2001 version of the W3C XML Schema standard (http://www.w3.0org/ 2001/XM-
L Schema). The encode API functions generate valid, well-formed XML messages that are consistent with the encod-
ing procedures described in the standard. The decode API options are capable of decoding an instance of an XML
instance that complies with the schema definition.

Chapter 2. Using XBinder

Running XBinder from the Command-line

The XBinder distribution contains a command-line compiler executable. This section describes how to run the com-
mand-line version executable.

To test if XBinder was successfully installed, enter xbinder with no parameters as follows (note: if you have not
updated your PATH variable, you will need to enter the full pathname):

xbi nder
Y ou should observe the following display (or something similar):

XBi nder Conpiler, Version 2.6.0
Copyright (c) 2002-2018 (Cbjective Systems, Inc. All R ghts Reserved.

Usage: xbinder <filenanme> options
<fil enane> XML schema or WBDL source file name(s).
Multiple fil enanes may be specified.

* and ? wildcards are all owed.

Language options (choose only one):

-C Generate C code
-Cc++ or -cpp CGenerate C++ code
-c# or -csharp Cenerate C# code
-java Cenerate Java code

Basi c options:

- xm Generate XM encode/ decode functions
-config <file> Speci fy schema bindings file.

-0 <directory> Qutput file directory

-1 <directory> Import file directory

-all Conpil e all dependent files

-war ni ngs Qut put conpi | er warni ng nmessages

-conmpat <version> Cenerate code conpatible w th previous
conpil er version. <version> format is
X.X (for example, 1.0)

Options to reduce ampbunt of generated code:
- | ax Cenerate code that does |ax error checking
-noderiv Do not generate special derived type code

Options to alter generated code:

- nanespace Speci fy a nanespace prefix for all generated itens
- nodat est anp Do not put date stanmp in header
- nom xed Do not generate string structure for m xed content

-el enCasi ng <val ue> Set el enent nanme case to | ower/ upper
-typeCasi ng <val ue> Set type nanme case to | ower/upper

Options for the generation of additional code:
-genPrint or

Using XBinder

-print

C/ C++ basi c options:
-dom
-json
- sax
-nodul ari ze
- nodecode
- noencode
-trace

Cenerate print functions

CGener at e DOM encode/ decode functions (C only)
CGenerate JSON encode/ decode functions (C only)
CGener at e SAX-based decoders (default is pull-parser)
Handl e i ncl uded schemas as separate nodul es

Do not generate decode functions

Do not generate encode functions

Add trace diag nmsgs to generated code

C/ C++ options to reduce anobunt of generated code:

- conpact
- nocopy
- noheader
-noxm ns

Gener ate conpact code

Do not generate copy nethods (C++ only)

Do not add code to encode XML header (<? xm ...)
Do not generate code to support XM namespaces

C/ C++ options to alter generated code:

-borl and
-cl4n

-cppns <ns>

- cppext <ext>

-deri viMbdel <nodel >

-enunthoi ce
-fragments

-initlists

-noEncDef aul t
-noDef aul t Ns
-noNanmedBi t s

- nunDat eTi me
- pdu <el enent >

Cenerate special code for Borland C++ conpil er
Generate Cl14N format encode functions
Add gi ven C++ nanespace to generated code (C++ only)
Set file extension for generated C++ source files

Set the derivation nodel to extended/interface
CGenerate enumtype for type selector for choice types
Cenerate code to encode XM fragnents

(start elenent, contents, end el enent)
Generate code that initializes lists to default

(when possi bl e)
Do not add schenma defaul t/fixed values to XM instance
Do not use default nanmespace in XM instance
Do not generate naned bits for Enuniist,

use regul ar list instead
Use numeric structures for all date/time types
Desi gnate el enment to be a PDU

-project <prj_nanme> Set project name

-soap, -soapl2
-soapll
-static

-strict
- useNSPf x
-useflteq

Cenerate code to format/parse SOAP v1.2 nmessages
Cenerate code to format/parse SOAP v1.1 nmessages
Cenerate code that uses static nmenory
(when possible, C only)
Cenerate code that does strict syntax checking
Use XSD nanespace prefixes in C C++ code
Use float equality functions to ignore rounding
errors in floating-point conparisons

-use-qgt [Qist | QinkedList | Qvector | QVarLengthArray]

-usest|
- noenumvar s

- W64

- X64

Use @ classes for strings and lists, wusing the given

Q@ collection class as the default for lists. Default

i s QinkedLi st.

Use C++ Standard Tenpl ate Library (STL)

Do not generate fields using generated enumtypes;
revert to prior behavior (generate OSU NT16 i nstead)

Cenerate Visual Studio project files for a 64-bit
XBi nder installation

Cenerate code using 64-bit integers for |engths on
64-bit systens

Using XBinder

C/ C++ options for the generation of additional code:

- get set Cenerate C++ getters and setters

-genWiter Cenerate witer test program

- genReader Cenerate reader test program

- genFree Cenerate nenory free functions (C only)

-genFactory Cenerate Factory functions

- genRWl'est Cenerate read/wite test program

- genSt ubs Cenerate SOAP client stub functions from WSDL

- genSkel Cener ate SOAP skel eton server program from W5DL

-gend i ent Cenerate web service client test program from WSDL

-genSSLC i ent Cenerate a secure HITP client test program usi ng QpenSSL

- genSSLSt ubs Cenerate secure HTTP stub functions using OpenSSL

-genTest [<xmfile>] GCenerate test code. |If XM instance provided,
this will be used; otherw se, random data

-genvalid Cenerate validation functions

-usePDU <el enent> Use PDU for witer/reader test program

- W32 Use with '-genMake' to generate Wndows NMVAKE file

(default = G\

C/ C++ options for makefile or project generation
- genhhake Cenerate nmakefile
-genMakelLi b [<libname>] Generate code in makefile to put all objects
into a static library
-genhMakeDLL [<dl |l name>] Generate code in nmakefile to build shared object
-genvcproj [version] Cenerate Visual Studio C C++ project files
[version] is 2017, 2015, 2013, 2012, 2010, 2008, 2005, 2003,
vc6 (W ndows only)
-makeopts <dynamiclib | staticlib | multithreaded>
Use conpil ation options for dynamc, static, and nultithreaded
l'ibraries.

C/ C++ conpressi on options:
-zip Add code to generated reader/witer to use
standard gzip conpression (requires zlib install)

C# extra options:
-csfile <nanme> Specifies one .cs file for all generated code
Set <nane> to '*.cs' for one .cs file per .xsd file
-csnsnane <nanme> Nane for C# nanespace

-csnspfx <prefix> C# nanmespace names will be this prefix, followed by
schema nane

- genhhake Cenerate nmakefile

-genWiter Cenerate witer test program

- genReader Cenerate reader test program

-genvcproj <version> Cenerate Visual Studio C# project files

<version> is 2017, 2015, 2013, 2012, 2010, 2008, 2005 (W ndows on
- nocsget set Cenerate properties only, no getter/setter methods
-usePDU <el enent> Use PDU for witer/reader test program

Java extra options:
- pkghane <nane> Nane for Java package
- pkgpfx <prefix> Java package names will be this prefix, followed by
schema nane

Using XBinder

- genhhake Cenerate Apache Ant buildfile (build.xm)
-genWiter Cenerate witer test program

- genReader Cenerate reader test program

-usePDU <el enent> Use PDU for witer/reader test program

- Xpp Use Xml Pull APl rather than StAX (StAX is default)

To use the compiler, at a minimum, asingle XSD or WSDL source file must be provided along with at least one set
of encoding rules and atarget output language. The current version of XBinder supports the generation of C (-c), C+
+ (-cpp), C# (-csharp), or Java (-java) source code and the generation of code to encode/decode to/from XML (-xml),
DOM (-dom), or JSON (-json).

The sourcefile specification can be afull pathname or only what is necessary to qualify thefile. If directory information
is not provided, the user's current default directory is assumed. Multiple source filenames may be specified on the
command line to compile a set of files. The wildcard characters **’ and *? are also alowed in source filenames (for
example, the command ‘xbinder * .xsd -c -xml” will compile al XSD filesin the current working directory).

The following table lists al of the command-line options for C/C++ in alphabetical order. Java/lC# command-line
options are documented in the XBinder v2.2 Java/C# User Manual.

Option Argument Description

-all None Generate code for al dependent filesin a given compila-
tion. This includes the main XSD files specified on the
command lineaswell asall imported and included schema

files.
-borland None Generate special code for Borland C++ compiler.
-C None Generate C source code.
-ct++ -cpp None Generate C++ source code.
-cl4n None Generate encode functions which use Canonical XML

(http:// www.w3.org/ TR/xml-c14n) mode by default.

-compact None Generate more compact code. This is useful for generat-
ing code for embedded applications where code-size foot-
print is important. The main optimization made to gener-
ate more compact code is the omission of error message
text and parameter code.

The -lax option can also be used to reduce the amount of
generated code.

-compat <version> Generate code that is compatible with an older version of
the XBinder compiler. The format of the version number
is“n.n” (for example, 1.0).

-config <filename> Thisoption isused to specify the name of afile containing
configuration information for the source file being parsed.
This is similar to the ‘binding schema used with some
other XML data binding applications.

-cppns <name> This option is used to specify a C++ namespace declara-
tionto be added to generated code. A configurationfileen-
try can be used to specify particular C++ namespaces for
parts of your schema. See the discussion on <cppName-
space> elements under <schemaBindings>.

-dom None Encode to or decode from a Document Object Model
(DOM) tree structureinstead of directly to/from XML text

Using XBinder

Option

Argument

Description

format. Thisallows processing uniqueto DOM to be done
prior to serialization/deserialization (for example, XPath
searches).

Note that this option is currently only available with C
code generation (not C++).

-elemCasing

lower or upper

This option is used to change the case of the first letter in
element names in the C or C++ code from what is speci-
fiedinthe XSD file. Thisoptionistypically used when the
XSD file contains type, element, and/or attribute names
that are the same. It provides away to make the name dis-
ambiguous in the generated C or C++ code. Typically, el-
ement names are set to lower case.

See -typeCasing for changing the case of type names.

-enumChoice

none

This option is used to cause XBinder to generate and use
enum types asthe"selector" type for choice-related types.
Thisincludes choice groups, union types, and classes gen-
erated to support element substitution groups and type de-
rivation. It is useful for improving type safety.

-fragments

None

Generate additional encodefunctionsthat allow fragments
(parts) of an XML document to be created without having
to create an entire document. The start element, contents,
and end element fragments for any given type can be cre-
ated using these functions. This is useful for stream-ori-
ented protocols such as XM PP.

-genclient

None

Generate a sample web services client program. This op-
tion must be used with option -genTest. The sampleclient
program populates a request messasge with test data,
sendsto the server, and waits to receive the response mes-

sage.

-genfree

None

Generate memory free utility functions. Memory free
functions are C functions that allow al memory within a
given structure to be freed. It is possible to free memory
without these functions by using the rtxMemFreefunction
on a context. This frees al memory held by the context.
But some applications require the capability to free the
memory associated with a given structure.

-genmake

None

Generate a makefile to build the generated code. The
makefile is compatible with either the GNU make utili-
ty or the Visua Studio nmake utility. A Windows Visu-
a Studio nmake file is generated if -w32 is added to the
command-line.

-genmakelib

<libname> (optional)

Generate a makefile to put objects into a static library
named <libname>. If <libname> is omitted, the parent di-
rectory name would be used as the base name for the li-
brary.

Using XBinder

Option

Argument

Description

-genmakedl|

<dllname> (optional)

Generate a makefile to build a shared object named <dlI-
name>. If <dllname> isomitted, the parent directory name
would be used as the base name for the DLL.

-genreader

None

Generate acompl etereader program similar to what can be
found in the sample subdirectory. This program will read
an encoded XML document from an input file, decode it,
and then print the decoded field valuesto standard output.

-genrwtest

None

Generatearead/writetest program. Thisprogramwill read
an XML document corresponding to a specified global el-
ement definition in the compiled schema document, de-
codeit, and then re-encode it and write it to an output file.

-genskel

None

Generate a server skeleton program. This option must be
used with option -genTest. The skeleton server receives
a request message, populates response message with test
data, and sends the response message back to the client. A
stub (empty) function is generated for each WSDL opera-
tion. These functions should be supplied by the Web Ser-
vice developers. In the generated server code, some com-
ments are put in place for calling of the these functions.

-genSSLClient

None

Generate a secure HTTP client test program using
OpenSSL. This option must be used with option -genTest.
Note: thisassumes OpenSSL isin place on the target plat-
form. The client test program opens a TCP connection to
port 443 on server. The server hostname is provided by
option -hostname of the client program, and the port num-
ber can be changed using -port option of the client. The
client then initiates the SSL handshake over the TCP con-
nection; and sends HTTP request over SSL.

-genSSL Stubs

None

Generate secure HTTP stub functions using OpenSSL.
A stub function sends a request to a server over
SSL and then turns around and waits for a re
sponse. The stub functions can be caled from a
test client program. The functions are written to the
<modulename>WSDL SSL ClientStubs.c(pp) file where
<modulename> is the base name of the WSDL sourcefile
that was parsed.

-genstubs

None

Generate stub functions. A "stub", in web serviceterms, is
afunction that workslike aremote procedure call. It sends
areguest to a server and then turns around and waits for
a response. The stub functions can be called from a test
client program for aweb service. Thefunctionsarewritten
to the<modul ename>W SDL SoapClientStubs.c filewhere
<modulename> is the base name of the WSDL sourcefile
that was parsed.

-gentest

<xmlfile> (optional)

Generate test utility functions. Test functions populate an
instance of each global element defined within a schema
with random test data to be encoded. The functions pro-
vide agood template for writing code to populate the gen-
erated programatic variables. The functions are written to

Using XBinder

Option

Argument

Description

<modulename>Test.c files where <modulename> is the
base name of the XSD source file that was parsed.

If the optional XML filename argument is provided, the
generated test functionswill use datafrom the given XML
instance instead of generating random test data.

-genvalid

None

Generate validation functions. These functions are
used to validate a given XML instance against
the compiled schema. The functions are written to
<modulename>VIdt.c files where <modulename> is the
base name of the XSD source file that was parsed.

-genveproj

<vc6[2003]2005|2008|2010]|
2012|2013]2015|2017> (op-
tional)

Thisoption instructsthe compiler to generate Visual C++-
or Visual Studio-compatible project files to compile gen-
erated source code. This is a Windows-only option. By
passing one of the listed Visual Studio versions, the com-
piler will generate aproject that links against libraries pro-
vided for those versions of Visual Studio. For example,
specifying 2010 will generate a project that links against
libraries in the * _vs2010 directory. Not specifying a
year will cause the compiler to link against libraries com-
piled for Visual Studio 2015.

-genwriter

None

Generate a complete writer test program similar to what
can be found in the sample subdirectory. This program
will populate a record with test data, encode the data into
XML, and then write the encoded record to an output file.

-getset

None

Generate C++ getter and setter methods.

<directory>

This option is used to specify a directory that will be
searched for XSD <import> and <include> items. Multi-
ple— qualifierscan be used to specify multipledirectories
to search.

-initlists

None

Generate linked list initialization functions for complex
types that have a repeating element with a default value.

-lax

None

This option causes decode/validation functions to be gen-
erated that contain less schema-validation error checking
code:

 Decoding continues when a required attribute is miss-
ing.

e Decode/validation functions do not contain pat-
tern/facetsMinMaxOccurs/datetime tests.

* Decoded enumerated value is not verified to be within
the defined numeration set.

* If an attribute has fixed value and content is decoded,
do not verify the content matches the fixed value.

» Decode sequencein lax mode.

Using XBinder

Option Argument Description

This can be useful for working with XML documents that
are not completely valid with regards to the schema.

-modularize None This option is used when XSD <include> directives are
included in a schemato tell the processor to put the gen-
erated code in separate output files based on the include
file names. The default behavior if thisis not used is to
include all of the codein the main file that isincluding the
definitions. This can only be used if the included files can
be successfully compiled on their own (i.e. are not depen-
dent on definitions from the parent module€).

-namespace <prefix> Add the given prefix to all generated items (typedefs and
functions). This makes it possible to disambiguate items
with the same names that are in different schemas. Note
that the - useNSPfx option can be used to use namespace
prefixesthat are defined inthe X SD document for this pur-
pose (see the description of this option below).

-nodatestamp None Do not insert a date stamp in the header of each generated
file. Thiscan be useful when using asource control system
to prevent identical source files from appearing different.

-noencode None Do not generate encode functions.

-nodecode None Do not generate decode functions.

-noDefaultNS None Do not use default namespace in XML instance.

-noderiv None Suppress generation of extra code for run-time derived

type handling. This code makesit possibleto decode com-
plexContent types using xsi:type declarations.

-noenumvars None Do not generate fields using generated enum types; revert
to prior behavior (generate OSUINT 16 instead). Thismay
save some space when used with some compilers.

-noheader None Do not add an XML header to generated documents. This
the first line in the document that begins with *<?xml’.

-nomixed None Do not generate a special structure to hold mixed content
items. The generated code will more closely match the
schema layout. However, mixed content will not be sup-
ported.

-noNamedBits None Do not generate anamed bits structure for enumerated list
items. Many application use an XSD list of enumerated
items to express a bit map like structure for the specifica-
tion of properties. By default, XBinder generates a corre-
sponding bit structure to make setting the properties eas-
ier. However, some applications may have a need to re-
peat an enumerated item in a list more than one time. In
this case, specification of this option will cause a standard
linked list structure to be used.

-noxmins None Do not generate namespace attribute listsin all generated
C structures. In general, advanced namespace processing
is not needed for many applications and the addition of the

Using XBinder

Option Argument Description
namespace attributes lists adds a considerable amount of
size to the code.

-numDateTime None Use numeric date/time structures for all XSD data/time

types (date, time, dateTime). The default is to use strings
for these items.

-0 <directory> This option is used to specify the name of a directory to
which al of the generated files will be written.

-pdu <element> Recognize the given global element asaprotocol data unit
(PDU). A PDU is a main message type in the module for
which encode and decode functions are generated. By de-
fault, the compiler only recognizes non-referenced global
elements as PDU’s. This alows this default behavior to
be overridden.

-print None Generate print utility functions. Print functions are debug
functions that allow the contents of generated type vari-
ables to be written to stdout. The functions are written to
<modulename>Print.c files where <modulename> is the
base name of the XSD source file that was parsed.

-project <name> Set project name. By default, parent directory nameisthe
used for the project name.
-sax None Generate SAX handlers for decoding XML documents.

Prior to XBinder version 1.2, thiswasthe default (and on-
ly) method for decoding XML messages. XBinder 1.2+
uses a pull-parser by default for XML decoding.

-s0ap None Generate additional code to add or parse SOAP envelope,
body, and fault tags in XML messages. This allows the
messages to be used in a SOAP client or server applica
tion. The version of SOAP supported by this option is set
to the highest version currently supported by the applica-
tion. Thisiscurrently version 1.2.

-s0apll None Generate additional code to add or parse SOAP 1.1 enve-
lope, body, and fault tags in XML messages. This allows
the messages to be used in a SOAP 1.1 client or server
application.

-s0apl12 None Generate additional code to add or parse SOAP 1.2 enve-
lope, body, and fault tagsin XML messages. This allows
the messages to be used in a SOAP 1.2 client or server
application.

-static None This option instructs the compiler to use static memory
whenever possible when generating C source code. The
array’s size will be determined by the type's maxLength
or length facet.

-strict None This option causes encode/decode/validation functions to
be generated that does strict syntax checking:

« Validate a UTF-8 string before encode it. If the the
stringisnot correctly encodedin UTF-8, encoding stops
and returns an error.

10

Using XBinder

Option Argument Description

* When aninvalid enum value is encountered during de-
coding, decoding stops immediately and returns an er-
ror.

-trace None Add trace diagnostic messages to generated code. These
messages cause printf statementsto be added to print entry
and exit information into the generated functions. Thisis
a debugging option that allows encode/decode problems
to be isolated to a given production processing function.
Once the code is debugged, this option should not be used
asit adversely affects performance.

-typeCasing lower or upper This option is used to change the case of the first letter in
type namesin the C or C++ code from what is specified in
the XSD file. Thisoption istypically used when the XSD
file containstype, element, and/or attribute namesthat are
the same. It provides away to make the name disambigu-
ousinthegenerated C or C++ code. Typically, type names
are set to upper case.

See -elemCasing for changing the case of element names.

-useN SPfx None Add namespace prefixes defined in the XSD source files
to the generated C/C++ names. The format of the names
generated whenthisisspecifiedis<prefix>_<name>. This
is useful when an XSD specification consists of multi-
ple shemas defined in multiple namespaces and the same
names are used for entities across the specifications but
within different namespaces. This prevents name colli-
sionsin the generated code at the expense of creating more
verbose names.

-useflteq None Generate code which uses functions that account for a
small margin of error to compare floating-point numbers.

-usepdu <element> This option causes the given protocol data unit (i.e. global
element) to be used as the basis for generated reader and
writer programs. If not specified and the compiled schema
contains multiple unreferenced global elements, a global
element will be chosen at random.

-use-qt [QLinkedList | QList ||UseQtclassesforstringsandlists. For lists, usesthe given
QVector | QVarLengthAr-|Qt collection class as the default. If adefault collectionis
ray] (optional) not given, QLinkedList is used. The choice of Qt collec-
tion classes can be further refined viaaconfiguration file.

-usestl None Use Standard Template Library (STL) classes (currently,
std::string and std::vector) in generated C++ code. By de-
fault, STL isnot used in generated code.

-warnings None Output information on compiler generated warnings.

-w32 None Indicate code generation is being donefor use on the Win-
dows operating system. For example the backslash char-
acter (\) isused as a path separator instead of forward slash
(/). Theformat of the generated makefileisasoin Visual
Studio nmake format (see -genmake above).

11

Using XBinder

Option Argument Description

-w6b4 None Similar to the -w32 option except that any generated
project files specify x64 asthe platform instead of Win32,
and referencesto librarieslook in folders that end in _64.

-x64 None Generate code using 64-hit integers for lengths on 64-
bit systems. This affects dynamic arrays (field n) and
base64Binary and hexBinary strings (field numoctsor OS-

DynQOctStr).

-xml None Generate encode/decode functions that marshall progra-
matic data to and from XML format.

-Xpp None Java option that causes the XmlIPull API to be used rather
than StAX.

-zip None Add standard gzip compression function calls to generat-

ed reader and writer programs. This requires that zlib be
installed on the target system.

Compiling and Linking Generated Code

C/C++ source code generated by the XBinder compiler can be compiled using any ANSI standard C or C++ compiler.
The only additional option that must be set is the inclusion of the XBinder C/C++ header file include directory with
the -1 option.

When linking a program with compiler-generated code, it is necessary to include the XBinder common run-time
library (osysrt) and the XBinder XML run-time library (osysrtxml). If the -sax option was specified, a third-party
XML parser library isalso required. When including an XML parser library, it is also necessary to link with an object
file that provides a common abstraction layer to different vendor implementations. The distribution contains object
filesto interface with the EXPAT XML parser (http://www.libexpat.org) and the libxml2 XML parser library (http://
xmisoft.org). Thesefiles are named rtXmlExpatlF.obj and rtXmlLibxml 2| F.obj respectively (note: different variations
of this object file exist for the different library configurations described below). It is possible to create your own
implementation of thisinterfacefileif linking with adifferent XML parser library is desired. Source code is provided
for the default implementations which can be used as a guide for writing your own implementation. See the XML
Parser Interface section for details on thisinterface.

If the -dom option was specified, the DOM library (osysrtdom) is also required. Using the -dom option implies using
the -sax option, so an XML parser library and interface object must also be included as described above. A DOM API
library must also be used. XBinder includes a DOM API library (osysrtdomapi) which interfaces with the libxml2
XML parser library. You may also write your own implementation using another XML parser library. See the XML
C DOM Interface section for more details on thisinterface.

For static linking on Windows systems, the names of the library files are osysrt_a.lib and osysrtxml_a.lib. On UNIX/
Linux, the library names are libosysrt.a and libosysrtxml.a. The library files and XML library interface object files
are located in the lib subdirectory. For UNIX, the —L switch should be used to point to the subdirectory path and —
losysrtxml and - osysrt used to link with the libraries. For Windows, the—LIBPATH switch should be used to specify
the library path.

There are several other variations of the C/C++ run-time library filesand XML parser library interface files for Win-
dows. The following table summarizes what options were used to build each of these variations:

Library Files Description
osysrt_alib Static single-threaded libraries. These are built with the —
osysrtxml_allib ML option. These are not thread-safe. However, they pro-

12

Using XBinder

Library Files Description

osysrtdom_alib vide the smallest footprint of the different libraries. (Note:

osysrtjson_alib <lib>would be replaced with the name of the XML parser

rtXmi<lib>IF_a.obj library to be used. For example, rtXmlExpatlF_a.obj for
the EXPAT library.)

osysrtxml.lib rtXmi<lib>IF.obj DLL libraries. These are used to link against the XBinder

run-time DLL library (osysrtxml.dil). Note that thissingle
DLL holds code from al of the individual libraries that
may be used when linking statically.

osysrtmt_alib osysrtxmimt_alib osysrtdommt_alib|Static multi-threaded libraries. These libraries were built
osysrtjsonmt_a.lib rtXml<lib>IFmt_a.obj with the—MT option. They should be used if your appli-
cation containsthreads and you wish to link with the static
libraries (note: the DLL’s are also thread-safe).

osysrtmd_alib osysrtxmimd_alib osysrtdommd_alib|DLL-ready multi-threaded libraries. These libraries were
osysrtjsonmd_allib rtXml<lib>IFmd_a.obj built with the -MD option. They allow linking additional
object modules in with the XBinder run-time modules to
produce larger DLL’s.

For dynamic linking on UNIX/Linux, ashared object version of each run-timelibrary isincluded inthelib subdirectory.
Thisfile typically has the extension .so (for shared object) or .gl (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files (it varies for different types of UNIX systems). Typicaly,
if ashared object version of alibrary existsin the linker library path, the linker will choose it over the static archive
library version. So if you want to link with the static libraries, it is usually sufficient to move the shared object files
somewhere else (or delete them).

The XBinder distribution contains some utilities to make the creation of build scripts easier. These utilities are as
follows:

» A -genmake command line optionto generate asample makefileto build thefiles generated by aspecific compilation,
and

» Makeincludefiles(file ending with extension .mk) that contain common symbolsfor many of the options described
above.

The —genmake option will cause a makefile to be created that will compile all of the generated source files into object
files using the configured C or C++ compiler (the compiler is configured in the platform.mk file, see below). This
makefile will contain dependencies for al included header files. The default generated makefile will be compatible
with the GNU make utility and should be portable to most UNIX/Linux systems. The -w32 command line switch can
be used to generate a makefile that is compatible with the Microsoft Visual Studio nmake utility.

The two primary make include files are platform.mk and xmlpar ser.mk. The platform.mk file contains al of the
common definitions for a particular platform. These include the C or C++ compiler and linker to be used and the
compile/link options. Thexmlpar ser.mk file contains common definitionsfor interfacing with an XML parser library.
Itis possible to change XML parser library implementations by simply changing the definitionsin thisfile.

See the makefile in any of the sample subdirectories of the distribution for an example of what must be included to
build a program using generated source code.

Porting Run-time Code to Other Platforms

The run-time source version of XBinder includes ANSI-standard source code for the base run-time libraries. This
code can be used to build binary versions of the run-time libraries for other operating environments. Included with the

13

Using XBinder

source code is a portable makefile that can be used to build the libraries on the target platform with minimal changes.
All platform-specific items are isolated in the platform.mk file in the root directory of the installation.

The procedure to port the run-time code to a different platform is as follows (note: this assumes common UNIX or
GNU compilation utilities are in place on the target platform).

1

6.

Create a directory tree containing a root directory (the name does not matter) and lib, src, rt*src, and build_lib
subdirectories (note: in these definitions, * isawildcard character indicating there are multiple directories matching
this pattern).

Copy thefilesending in extension “.mk” from the root directory of the installation to the root directory of the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCIl mode to ensure lines are
terminated properly).

Copy al filesfromthe src and the different rt* src subdirectoriesfrom theinstallation to the src and rt* src directories
on the target platform (note: if transferring from DOSto UNIX or viceversa, FTPthefilesin ASCII modeto ensure
lines are terminated properly).

Copy the makefile from the build_lib subdirectory of the installation to the build lib subdirectory on the target
platform (note: if transferring from DOS to UNIX or vice-versa, FTP the filesin ASCII mode to ensure lines are
terminated properly).

Edit the platform.mk filein the root subdirectory and modify the compilation parametersto fit those of the compiler
of the target system. In general, the following parameters will need to be adjusted:

CCC conpi | er execut abl e name
CCCC++ conpi | er execut abl e nane
CFLAGS Fl ags that should be specified on the C or C++ command |ine

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for Windows 32
(Visual C++) and GNU compilersrespectively. Either of these can be renamed to platform.mk for building in either
of these environments.

Invoke the makefile in the build_lib subdirectory.

If all parameters were set up correctly, the result should be binary library files created in the lib subdirectory.

Getting Started with C or C++ Sample Pro-
grams

To begin using XBinder to generate C source code, one should start with the sample programs. These arelocated in the
c/sample or cpp/sample subdirectories of the installation. A good sample program to get started with is the Employee
sample program. This program contains an XML schema file that describes an employee personnel record.

To run this sample program from the command-line interface, the following procedure should be followed:

1

2.

3.

Open an MS-DOS or other command shell window.
Change directory (cd) to the employee sample directory:
cd c/sanpl e/ Enpl oyee
Note: this assumes the starting point is the XBinder installation root directory.

Execute the nnake (Windows) or make (Linux/UNIX) utility program to build the program:

14

Using XBinder

nmake

Note: nmake is a make utility program that comes with the Microsoft Visual C++ compiler. It may be necessary
to execute the batch file vevars32.bat that comes with Visual C++ in order to set up the environment variables to
use this utility.

4. This should cause the XBinder compiler to be invoked to compile the employee.xsd XML schemafile. It will then
invoke the configured C compiler to compile the generated C file and test drivers. The result should be awriter.exe
and reader.exe program file which, when invoked, will encode and decode a sample employee record.

5. Invoke writer from the command line:
witer

6. Thiswill generate an encoded record and write it to adisk file. By default, the file generated is message.xml. The
test program has a number of command line switches that provide encoding options. To view the switches, enter
writer ? and a usage display will be shown.

7. Invoke reader from the command line:
r eader

8. Thiswill read thedisk filethat wasjust created by the writer program and decodeits contents. The resulting decoded
data will be written to standard output. The test program has a number of command line switches that provide
decoding options. To view the switches, enter reader ? and a usage display will be shown.

The procedure to run a C++ sample program is the same except that you would start in one of the cpp/ sample direc-
tories. The same procedure applies: execute the make utility and then run the writer and reader programs.

Getting Started with your own XML Schema

The quickest way to get up and running with your own XML schemafile or set of filesisto let XBinder generate a
sample program for you. This is done using the -genwriter and/or -genreader command-line options. These options
cause a complete writer and/or reader program to be generated and, when used in combination with -genmake, cause
amakefile to be generated to build the entire project.

For example, suppose you had a schemafile named mySchema.xsd that you wanted to generate encoders and decoders
for. The following command could be used to generate a complete set of C source files for this schema (note: C++
source files could be generated simply by changing -c to -c++ in this command):

xbi nder nmySchena.xsd -c -xm -print -genwiter -genreader -genmake

After generation is complete, all that needs to be done is execution of the generated makefile with the make utility
program and all of the files will be compiled and linked to form reader and writer executable files. Note that if thisis
being done on Windows, the -w32 option should be added to generate a makefile that is compatible with the Visual
C++ nmake utility.

The generated writer program contains a“ TODQ" section where code needs to be added to populate a variable of the
given datatypefor encoding. If test code generation (-gentest) is specified, the writer will call agenerated test function
to automatically populate the test variable.

The generated files can now act as a template on which you can base your own development. The generated
mySchemaTest.c (or .cpp) file contains the compl ete logic necessary to popul ate a data record corresponding to your
schema.

15

Using XBinder

If -gentest was specified without any arguments, the test file contains random data. This code generation can
be taken a step further if you have a sample of an XML instance that matches your schema (say, for example,
mySchemal nstance.xml). In this case, you can add

-gent est nySchenal nst ance. xm
to the command line and test source code will be generated that populates a structure with data from the test instance.

When reader and writer programs are generated, the X SD global element that is used as the basis for the program (i.e.
the main variable that isread from or written to) is the first Protocol Data Unit item that is encountered. This may not
always be the item you want to use. In this case, the -usepdu command-line option can be used to select the protocl
data unit (i.e. global element) you want to use in the generated test code.

16

Chapter 3. Generated C/C++ Source Code
Header (.h) File

The generated C/C++ includefile contains a section for each X SD type defined in the XSD sourcefile. In general, there
is a one-to-one correspondence between types defined in the X SD file and generated C type or C++ class definitions.
In some cases, however, extra types/classes are generated to support certain X SD types. Thisoccurs on XSD complex
type definitions when the element nesting level is greater than two (see the section on Complex Types for details).

In addition to XSD types, code is also generated for global element definitions. If no other type references a global
element, it is considered to be a main message element (also known as a protocol data unitor PDU). These elements
are encoded into the main XML documents or messages that make up the given specification. An entry point encode
and decode function is generated for each of these elements. The header file contains the function prototypesfor these
functions.

Many X SD-based protocols specify multiple global element declarations that describe different XML document types
that may be exchanged in a transaction. When a message type is not known in advanced, it is necessary to parse the
outer level tag of adocument in order to determine the correct decode and/or validation function to invoke. The -gen-
Factoryoption can be used to generate afactory class to automate this process. When option -genFactoryis specified,
additional code is generated for factory C type or C++ class definitions. A factory decode/validation/print fucntion is
also generated. The header file contains the function prototypes for these functions.

With aWSDL file, if binding information is available (i.e. binding section is present in the WSDL definition file),
C/C++ code is generated for WSDL Operation input/oputpt/fault types, and C++ control classes are generated for
WSDL Operation input/output/fault. There is a one-to-one correspondence between operation input/output defined
in the binding section and the generated C type or C++ class definitions. C type or C++ class definitions are also
generated for operation fault to define the default fault information (for example, faultcode, faultstring and faultactor
for SOAP 1.1) and fault detail information. If operation fault is defined in binding, extra types/classes are generated
to support the fault detail.

C Code Generated for XSD Types

If C code generation is selected, the following items are generated for each XSD type:
e Ctypedefinition
 Encode function prototype

 Decode function prototype

Initialization function prototype
« Other function prototypes depending on selected options (for example, print)

A sample section from a C header fileis asfollows:

/**
* Nanme
*/
typedef struct EXTERN Nane {
OSXMLSTRI NG gi venNarre;

17

Generated C/C++ Source Code

OSXMLSTRING i niti al ;
OSXMLSTRI NG f ami | yNane;

/* nanespace attributes - |list of OSXM_Nanespace */
OSRTDLi st _nsAttrs;
} Nane;

EXTERN i nt Xm ET_Nane
(OSCTXT* pctxt, Nane* pval ue,
const OSUTF8CHAR* el emNanme, OSXM_Nanespace* pNS);

EXTERN i nt Xm DT_Nanme (OSCTXT* pctxt, Name* pval ue);
EXTERN i nt Xm VT_Name (OSCTXT* pctxt);

EXTERN i nt 1 nit_Nane (OSCTXT* pctxt, Nane* pval ue);
EXTERN void Print_Nanme (const char* name, Nane* pval ue);

This corresponds to the following X SD type definition:

<xsd: conpl exType nanme="Nane">
<xsd: sequence>
<xsd: el ement nane="gi venNanme" type="xsd:string"/>
<xsd: el ement nane="initial" type="xsd:string"/>
<xsd: el ement nanme="fam | yNane" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, the NameC struct typedef corresponds to the NameXSD complex type definition.

The XmET_Namefunction prototype isthe XML encode function for the type. The XmIDT_Namefunction isthe pull-
parser decode function for this type. The XmIVT_Namefunction is the pull-parser validation function for this type
(only generated if -genvalidwas specified). If -saxwas specified, there would be no generated type function because
decoding is handled by SAX handler functions.

The Init_Namefunction prototype is the declaration of the initialization function for thistype. This function is called
toinitialize a variable of the type before encoding or decoding. It initializes al fields to zero or to the field's fixed or
default value as specified in the XSD sourcefile.

The Print_Namefunction prototype is for a print utility function. This is an optional function that was generated by
using the -printcommand line qualifier. It prints the contents of a variable of the generated type to the standard output
device.

C Code Generated for XSD Global Elements

At the end of the header file are the function prototypes corresponding to global elements that are not referenced by
any other type definitions. These are global elementsthat are not used in any other type definitions via the refattribute
(for example, <complexType name="SomeType" ref="SomeGlobal Element"/>). A sample global element section is
asfollows:

/**

18

Generated C/C++ Source Code

*
*
*
*
*
*
*
*

*

*/

d obal el enent functions. These functions encode or
decode conpl ete XM. docunents. They are generated for gl obal
el enents that are either:

1) not referenced by any other types, or

2) explicitly declared to be a PDU using the -pdu command |ine
option, or

3) explicitly declared to be a PDU using the <isPDU >
configuration file el enent.

EXTERN i nt Xm E_per sonnel Record
(OSCTXT* pctxt, Personnel Record* pval ue);

EXTERN i nt Xm D_per sonnel Record
(OSCTXT* pctxt, Personnel Record* pval ue);

In this case, the global element function prototypes correspond to the following global element declaration in the XSD

file:

<xsd: el ement nane="personnel Record" type="Personnel Record"/>

This element is not referenced by any other types in the specification. Encode and decode function prototypes are
generated for the declaration. See the section on Calling Generated C Encode and Decode Functionsfor a step-by-
step description on how to call these functions.

C Code Generated for Project-level Factory De-
code/Validation Function

If -genFactoryoption is specified and C code generation is selected, the following items are generated:

» Ctype definitions

 Decaode function prototype

 Validation function prototype (if -genValidoption is specified)

* Print function prototype (if -printoption is specified)

/1 element tags
enum {

}

T _cal lingDevice = 1,
T cal | edDevice = 2,
T | ast Redi recti onDevice = 3,

#defi ne Num G obal _El em CSTA Project 19

typedef struct EXTERN CSTA nessage ({

OSUI NT16 t;
uni on {
[*t =1 %

19

Generated C/C++ Source Code

struct CallingDevicel D *cal |l i ngDevice;

[* t =2 %/
struct Call edDevi cel D *cal | edDevi ce;
[* t =3 */

struct RedirectionDevicel D *| ast Redi recti onDevi ce;

by
} CSTA nessage;

/**

* Decode factory function. This function

* decodes conpl ete XML docunent when the message type

* is unknown.

*/

EXTERN i nt Xm D_Proj ect _CSTA (OSCTXT* pctxt, CSTA nmessage* pval ue);

/**

* Validate factory function. This function

* validates conplete XML docunment when the nessage type

* is unknown.

*/

EXTERN i nt Xm V_Proj ect _CSTA (OSCTXT* pctxt);

EXTERN void Print_Project_ CSTA (const char* nane, CSTA nmessage* pval ue);

extern const char* gl obal _el em nanes_CSTA Project[];

C Code Generated for WSDL Operation In-
put/Output/Fault Types

If C code generation is selected, the following items are generated for each WSDL Operation input/ output/fault types:
e Ctypedefinition
» Encode function prototype

» Decaode function prototype

Initialization function prototype

 Other function prototypes depending on selected options (for example, print)

/**
* WSDL operation definitions
*/
typedef struct EXTERN Add_I nput {
Oper ands_ELEM Oper ands;
} Add_I nput;

typedef struct EXTERN Add_Cut put {
OSREAL Resul t;

20

Generated C/C++ Source Code

} Add_CQut put;

typedef struct EXTERN Add_Fault {
struct ({
unsi gned faul tactorPresent : 1;
unsi gned detail Present : 1;
}m
OSXMLSTRI NG f aul t code;
OSXMLSTRI NG faul tstring;
OSXMLSTRI NG f aul t act or;
OSXSDAny Type detai l ;
} Add_Faul t;

EXTERN i nt Xm E_Add_I nput (OSCTXT* pctxt, Add_Input* pval ue);
EXTERN i nt Xm D_Add_I nput (OSCTXT* pctxt, Add_Input* pval ue);

EXTERN i nt Xm E_Add_CQut put (OSCTXT* pctxt, Add_Qutput* pval ue);
EXTERN i nt Xm D_Add_OQut put (OSCTXT* pct xt
, Add_OQut put* pval ue, Add_Fault* pfault);

EXTERN i nt Xm E_Add_Fault (OSCTXT* pctxt, Add_Fault* pval ue);

This corresponds to the following WSDL portType and binding definitions:

<wsdl : port Type nanme="Cal cServi ceSoap" >
<wsdl : operati on nane="Add">
<wsdl : i nput nessage="tns: AddRequest" />
<wsdl : out put nessage="t ns: AddResponse" />
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nanme="Cal cServi ceSoap" type="tns: Cal cServi ceSoap" >
<soap: bi ndi ng styl e="docunent"
transport="http://schenmas. xnl soap. org/ soap/ http" />
<wsdl : operati on name="Add" >
<soap: operation soapAction="http://Cal c.com Cal ¢c/ Add" />
<wsdl : i nput >
<soap: body use="literal" />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal" />
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : bi ndi ng>

C++ Code Generated for XSD Types

For C++, aclassdefinitionisgenerated for each X SD type. Thisclassisderived from either the OSRTBaseTyperun-time
class or from a descendent of this class. The class may contain a constructor for initialization of member variables
and a destructor to free dynamic memory held by the class. Method declarations will also be generated instead of C
function prototypes for encoding, decoding, printing, and generation of test data. For some types, additional helper
methods may also be declared (for example, enumerated type definitions contain a toStringmethod declaration).

21

Generated C/C++ Source Code

A sample section from a C++ header file corresponding to the XSD Name type defined aboveis as follows:

/**
* Name
*/
cl ass EXTERN Nane : public OSXSDConpl exType {
public:
OSXMLSt ri ngCl ass gi venNane;
OSXMLStringCl ass initial;
OSXMLSt ri ngCl ass fam | yNane;

Name ();
Nane (const Nameg&);

virtual int encodeXM. (OSRTMessageBufferl F& nsgbuf,
const OSUTF8CHAR* el emNane, const OSUTF8CHAR* nsPrefi x);

virtual int decodeXM. (OSCTXT* pctxt);
static int validateXM. (OSCTXT* pctxt);
virtual void print (const char* nane);

OSRTBaseType* clone () const {
return new Nane (*this);

}
Nane& operator= (const Nanmeg&);

}

If you compare thisto what was generated for C above, you will noticethat al of theitems are now encapsulated within
aclass definition. Thisincludes the element declarations as well as the functions which are now methods in the class.

C++ Code Generated for XSD Global Elements

Special classes called control classesare generated for global elements that are not referenced by any other type de-
finitions. These are global elements that are not used in any other type definitions via the refattribute (for example,
<complexType name="SomeType" ref="SomeGlobal Element"/>).

The purpose of a control classisto act as a control interface for encoding or decoding complete XML documents or
messages. This class alows a message buffer or stream object to be associated with an XSD type class. Once this
association is made, methods can be invoked from within the class to serialize data to and from the type class and
the buffer or stream.

A sample global element section is asfollows:

/**/

/* */
/* personnel Record */
/* */

/**/

cl ass EXTERN personnel Record_CC : public OSXSDd obal El ement {
pr ot ect ed:

22

Generated C/C++ Source Code

Per sonnel Recor d* npVal ue;
per sonnel Recor d_CC& operator= (const personnel Record_CC&) ;

publi c:
per sonnel Recor d_CC (Personnel Recor d* pval ue=0);
per sonnel Recor d_CC (Personnel Recor d& val ue);
per sonnel Record_CC
(OSRTMessageBuf f er | F& nmsgbuf, Personnel Record* pval ue=0);
per sonnel Recor d_CC (OSRTMessageBuf f er 1 F& nsgbuf,
Per sonnel Recor d& val ue) ;
~per sonnel Record_CC() ;

/1 standard encode/ decode nethods (defined in base class):
/1 int encode ();
/1 int decode ();

/1 stream encode/ decode net hods:
i nt encodeTo (OSRTMessageBufferl F& nmsgbuf);
i nt decodeFrom (OSRTMessageBuffer| F& nmsgbuf);

/1 stream validate nethod:
i nt validat eFrom (OSRTMessageBuf f erl F& nsgbuf);

i nl i ne Personnel Record* getValue() { return npVal ue; }
inline void setVal ue (Personnel Record* pval ue) { npValue = pval ue; }

void print (const char* nane);

s

C++ Code Generated for Project-level Factory
Decode/Validation Function

If -genFactoryoption is specified and C++ code generation is selected, a Factory class definition is generated. The
class contains a constructor for initialization of member variables. Method declarations will aso be generated instead
of C function prototypes for decoding, validating and printing.

A sample section from sample CSTA C++ header fileisasfollows:

cl ass EXTERN CSTA Factory ({
pr ot ect ed:

/**

* The npContext nmenber variable holds a reference-counted C runtimnme

* variable. This context is used in calls to all C run-tine functions.
The

* context pointed at by this smart-pointer object is shared with the

* message buffer object contained within this class.

*/

OSRTCt xt Pt r nmpCont ext ;

/**

* The npMsgBuf menber variable is a pointer to a derived nessage buffer
or

23

Generated C/C++ Source Code

* streamclass that will manage the nmessage bei ng decoded.
*/
OSRTMessageBuf fer | F* nmpMsgBuf ;

publi c:
CSTA Factory () : mpContext (new OSRTContext()), npMsgBuf (0) {}
CSTA Factory (OSRTMessageBufferl F& nsgbuf) : nmpMsgBuf (&rsgbuf) {
npCont ext = nmsgbuf . get Cont ext ();

}
~CSTA Factory () {}

/**
* The getCtxtPtr nmethod returns the underlying C runtime context. This
* context can be used in calls to C runtine functions.
*/
inline OSCTXT* getCtxtPtr () {
return (!nmpContext.isNull ()) ? mpContext->getPtr() : O;

}
/1 element tags
enum {
T cause = 1,
T _consul tOptions = 2,
T servicesPermtted = 3,
b
#defi ne Num G obal _El em CSTA Project 19
OSUI NT16 t;
uni on {
[*t =1 */
cause_CC *cause
[*t =2 */
consul t Opti ons_CC *consul t Opti ons;
[*t =3 */

servi cesPermtted CC *servicesPernitted,

, o

/**
* Decode factory function. This function
* decodes conmpl ete XML docunent when the message type
* is unknown.
*/
i nt decode ();

/**
* Validate factory function. This function
* validates conplete XML docunment when the nessage type
* is unknown.
*/
int validate ();

void print (const char* nane);

24

Generated C/C++ Source Code

/**
* This method tests to see if the cause

* elenent is selected.
* @eturn TRUE if sel ected; FALSE ot herw se.

*/

inline OSBOOL is_cause () {
return (t == T_cause);

}

/**

* This method tests to see if the consultOptions
* elenent is selected.
* @eturn TRUE if sel ected; FALSE ot herw se.

*/

inline OSBOOL is_consultOptions () {
return (t == T_consul t Options);

}

/**

* This method tests to see if the servicesPerntted
* elenent is selected.
* @eturn TRUE if sel ected; FALSE ot herw se.
*/
inline OSBOOL is_servicesPermtted () {
return (t == T_servicesPernitted);
}

,

C++ Code Generated for WSDL Operation In-
put/Output/Fault Types

For C++, a class definition is generated for each WSDL Operation onput/output/fault type defined in binding. This
class is derived from the OSXSDComplexTyperun-time class. The class may contain a constructor for initialization
of member variables and a destructor to free dynamic memory held by the class. Method declarations will also be
generated instead of C function prototypes for encoding, decoding, printing, and generation of test data.

A sample section from sample CalcWSDL C++ header file isasfollows:

/**/

/* */
[* OSXM.SoapFaul t */
/* */

/**/

cl ass EXTERN OSXM.SoapFault : public OSXSDCompl exType {
publi c:
struct {
unsi gned faul tactorPresent : 1;
}m
OSXMLSt ri ngCl ass faul t code;

25

Generated C/C++ Source Code

OSXMLStringCl ass faultstring;
OSXMLSt ri ngCd ass faul tactor

OSXMLSoapFaul t ();
OSXMLSoapFaul t (const OSXM.SoapFaul t &) ;
virtual ~OSXM.SoapFault () {}

virtual int encodeXM. (OSRTMessageBufferl F& nsgbuf,
const OSUTF8CHAR* el emNane, OSXM_Nanespace* pNS)

virtual int decodeXM. (OSCTXT* pctxt);

/**

* WSDL operation definitions

*/
/**/
/* */
/* Add */
/* */

/**/

cl ass EXTERN Add_Fault : public OSXSDCompl exType {
publi c:
struct {
unsi gned detail Present : 1;
}m
. OSXMLSoapFault fault;
OSXSDAny Typed ass detai |

Add_Fault ();
Add_Fault (const Add_Faulté&);
virtual ~Add_Fault () {}

virtual int encodeXM. (OSRTMessageBufferl F& nsgbuf,
const OSUTF8CHAR* el emNane, OSXM_Nanespace* pNS)

virtual int decodeXM. (OSCTXT* pctxt);
virtual void print (const char* nane);
b
cl ass EXTERN Add_I nput : public OSXSDCompl exType {
publi c:
. : Oper ands_ELEM QOper ands;
Add_I nput ();
Add_I nput (const Add_I nput &) ;
virtual ~Add_Input () {}

virtual int encodeXM. (OSRTMessageBufferl F& nsgbuf,
const OSUTF8CHAR* el emNane, OSXM_Nanespace* pNS)

26

Generated C/C++ Source Code

virtual int decodeXM. (OSCTXT* pctxt);
static int validateXM. (OSCTXT* pctxt);
virtual void print (const char* nane);

OSRTBaseType* clone () const {
return new Add_Input (*this);

}
Add_| nput & operator= (const Add_I nput&);
private:
void defaultlnit ();
voi d doCommonCopy (const Add_Inputé& orig);
voi d doCommonRel ease ();
}

cl ass EXTERN Add_CQut put : public OSXSDCompl exType {
publi c:

8
C++ Code Generated for WSDL Operation In-

OSREAL Resul t;

Add_Qut put ();

Add_Cut put (const Add_Qut put &) ;
virtual ~Add_Qutput () {}

virtual int encodeXM. (OSRTMessageBufferl F& nsgbuf,
const OSUTF8CHAR* el emNanme, OSXM_Nanespace* pNS);

virtual int decodeXM. (OSCTXT* pctxt);
static int validateXM. (OSCTXT* pctxt);

virtual void print (const char* nane);

put/Output/Fault

Control classes are generated for WSDL Operation input/output/fault bindings. The purpose of acontrol classisto act
as a control interface for encoding or decoding complete XML documents or messages. This class allows a message
buffer or stream object to be associated with aWSDL Operation input/ output/fault type class. Oncethisassociation is
made, methods can beinvoked from within the classto serialize datato and from the type class and the buffer or stream.

A sample WSDL Operation Input/Output section is as follows:

cl ass EXTERN Add_Fault _CC : public OSXSDd obal El ement {
pr ot ect ed:

Add_Faul t * npVal ue;
Add_Faul t _CC& operat or= (const Add_Faul t _CC&);

27

Generated C/C++ Source Code

publi c:
Add_Fault _CC (Add_Faul t* pval ue=0);
Add_Fault _CC (Add_Faul t & val ue);
Add_Faul t _CC (OSRTMessageBuffer| F& nmsgbuf, Add_Fault* pval ue=0);
Add_Faul t _CC (OSRTMessageBuffer| F& nmsgbuf, Add_Fault & val ue);
~Add_Faul t _CC();

/1 standard encode/ decode nethods (defined in base class):
/1 int encode ();
/1 int decode ();

/] stream encode/ decode net hods:
i nt encodeTo (OSRTMessageBufferl F& nmsgbuf);

inline Add_Faul t* getValue() { return npVal ue; }
inline void setValue (Add_Fault* pvalue) { mpVal ue = pval ue; }

voi d genTest | nstance();
void print (const char* nane);

bl

cl ass EXTERN Add_I nput _CC : public OSXSDd obal El ement {
pr ot ect ed:

Add_I nput * npVal ue;

Add_| nput _CC& operat or= (const Add_I nput CC&);

publi c:
Add_I nput _CC (Add_I nput* pval ue=0);
Add_| nput _CC (Add_I nput & val ue) ;
Add_| nput _CC (OSRTMessageBuffer| F& nmsgbuf, Add_I nput* pval ue=0);
Add_I| nput _CC (OSRTMessageBuffer| F& nmsgbuf, Add_I nput & val ue);
~Add_I nput _CC();

/1 standard encode/ decode nethods (defined in base class):
/1 int encode ();
/1 int decode ();

/1 stream encode/ decode net hods:
i nt encodeTo (OSRTMessageBufferl F& nsgbuf);
i nt decodeFrom (OSRTMessageBuf fer| F& nmsgbuf);

i nline Add_I nput* getValue() { return npVal ue; }
inline void setValue (Add_Input* pvalue) { mpVal ue = pval ue; }

voi d genTest | nstance();
void print (const char* nane);

s

cl ass EXTERN Add_CQut put _CC : public OSXSDd obal El emrent {
pr ot ect ed:

Add_CQut put * npVal ue;

Add_Faul t* npFaul t;

Add_CQut put _CC& operat or= (const Add_Cut put _CC&) ;
publi c:

28

Generated C/C++ Source Code

Add_Cut put _CC (Add_OQut put * pval ue=0, Add_Faul t* pfault=0);
Add_CQut put _CC (Add_Qut put & val ue);
Add_Cut put _CC (Add_OQut put & val ue, Add_Fault& fault);
Add_Cut put _CC (OSRTMessageBuf f er | F& msgbuf, Add_Qut put* pval ue=0,
Add_Faul t * pfaul t =0);
Add_Cut put _CC (OSRTMessageBuf f er | F& msgbuf, Add_Qut put &
val ue);
Add_Cut put _CC (OSRTMessageBuf f er | F& msgbuf, Add_Qut put &
val ue,
Add_Faul t & fault);
~Add_Qut put _CC() ;

/1 standard encode/ decode nethods (defined in base class):
/1 int encode ();
/1 int decode ();

/1 stream encode/ decode net hods:
i nt encodeTo (OSRTMessageBufferl F& nmsgbuf);
i nt decodeFrom (OSRTMessageBuffer| F& nmsgbuf);

/1 stream validate nethod:
i nt validat eFrom (OSRTMessageBuf f erl F& nsgbuf);

inline Add_Qut put* getValue() { return npVal ue; }
inline void setVal ue (Add_Qutput* pvalue) { npValue = pval ue; }

voi d genTest | nstance();
void print (const char* nane);

b
Namespace Considerations

In XML and XML Schema, namespaces are frequently used to ensure the uniqueness of entity names across schema
boundaries. By default, XBinder does not use the namespace information when generating names for types, elements,
and attributes in the C or C++ code. This is done to provide shorter and more concise names, but it sometimes leads
to collisions and ambiguous names in the code.

There are anumber of methods that can be used to remove this ambiguity. These are described below.
Use of the -useNSPfx Command Line Switch

Specifying -useNSPfxon the command line when compiling a set of XSD specificationswill cause namespace prefixes
specified in the schema to be added to the generated C or C++ names. This will ensure that no naming collisions will
occur (thisis only true, of course, if the XSD specifications being compiled are valid in their use of namespaces).
However, the generated C or C++ names will be longer as they will be of the form <prefix>_<localName>where
prefixis the defined namespace prefix and localNameis the local name for the item.

Onething to be aware of when using -useNSPfxis that prefixesfor agiven namespace URI can change across schemas.
For thisreason, it isrecommended that all schemas that make up a project be compiled at once to ensure that the same
prefix is used for a given name. This can be done by either including all of the schema filenames to be compiled on
the command line at once, or by using the -all switch to instruct the compiler to compile all included and/or imported
schemas. The prefix that is used for a given name is the first one encountered during the compilation process. If you
know that namespace prefix names are maintained in aconsistent manner across schemas (i.e. the same prefix isalways
used to describe a given URI), then it is OK to compile the schemas individually with this option.

29

Generated C/C++ Source Code

Useof the-typeCasing and -elemCasing Command L ine SwitchesGlobal element and type names may be the same
in agiven schema. While this may be a questionable programming practice from alogical point of view, itislegal and
it will cause problemsin XBinder generated code because the generated names will clash. This can even be the case
within the same namespace; therefore, use of the -useNSPfxoption cannot be used to solve this problem.

The -typeCasingand/or -elemCasingoptions provide aquick and easy way to fix these namesin all compiled schemas.
By setting one or the other (or both) to different case values (upper or lower), you can ensure that no name collisions
of this sort will occur. The typical convention when using these switches is to set element name case to lower and
type name case to upper.

Use of the <prefix> Configuration File SettingMore specific control of naming problems can be achieved by using
the <prefix> configuration file setting. Thisalows individual entities within a schema specification to be targeted for
name alteration. It is a good alternative when you only have afew name clashes and do not want to add the verbosity
to al namesintroduced by the -useNSPfxswitch.

See the section on configuration file use for specifics on how to use a configuration file to customize the compilation
process. Using <prefix> in a configuration file causes the specified prefix name to be prepended to the generated C or
C++ name. This will make the name of the targeted item different in the generated code from another entity having
the same name.

30

Chapter 4. XSD Simple Type to C/C++ Type
Mappings

XSD built-in simple type declarations are mapped directly to C types defined in the 0sSysT ypes.h runtime header file.
The general mapping of each XSD simple typeto a C typeisasfollows:

XSD Built-In Type C Type (in 0sSysTypes) C Type (base)
anyURI OSXMLSTRING unsigned char*
anyType OSXSDANnyType struct
base64Binary OSDynOctStr struct

boolean OSBOOL unsigned char*
byte OSINTS8 char

date OSXMLSTRING unsigned char*
dateTime OSXMLSTRING unsigned char*
decimal OSREAL double

double OSREAL double

duration OSXMLSTRING unsigned char*
ENTITIES OSRTDList linked list struct
ENTITY OSXMLSTRING unsigned char*
float OSREAL double

gDay OSXMLSTRING unsigned char*
gMonth OSXMLSTRING unsigned char*
gMonthDay OSXMLSTRING unsigned char*
gYear OSXMLSTRING unsigned char*
gYearMonth OSXMLSTRING unsigned char*
hexBinary OSDynOctStr struct

ID OSXMLSTRING unsigned char*
IDREF OSXMLSTRING unsigned char*
IDREFS OSRTDList linked list struct
integer OSINT32 int

int OSINT32 int

language OSXMLSTRING unsigned char*
long OSINT64 long long (64-bit integer type)
Name OSXMLSTRING unsigned char*
NCName OSXMLSTRING unsigned char*
negativel nteger OSINT32 int

NMTOKEN OSXMLSTRING unsigned char*
NMTOKENS OSRTDList linked list struct
nonNegativel nteger OSUINT32 unsigned int
nonPositivel nteger OSUINT32 int

31

XSD Simple Type to C/C++ Type Mappings

XSD Built-In Type C Type (in 0sSysTypes) C Type (base)
normalizedString OSXMLSTRING unsigned char*
positivel nteger OSUINT32 unsigned int
short OSUINT16 short

string OSXMLSTRING unsigned char*
time OSXMLSTRING unsigned char*
token OSXMLSTRING unsigned char*
unsignedByte OSUINT8 unsigned char*
unsignedShort OSUINT16 unsigned short
unsignedint OSUINT32 unsigned int
unsignedLong OSUINT64 unsigned long (64-hit)

For C++, class wrappers are added around each of these types when they are used in simple type declarations. In most
cases, these classes contain a single public member variable called value that holds the value of the type. They also
contain a constructor and assignment operator for setting the value.

The following sections provide more detail on these mappings.

Character String Types

XSD defines many kinds of character string types including string, nornalizedString, and token.
All of these XSD types are mapped to an OSXMLSTRING type by default. This internal type represents a UTF-8
character string. The definition of thistype in 0sSysTypes.h isasfollows:

t ypedef struct OSXMLSTRI NG {
OSBOOL cdat a;
const OSUTF8CHAR* val ue;
} OSXM.STRI NG

The cdata member of this structureis aflag indicating whether or not the value is to be encoded asan XML CDATA
section. The value member isa pointer to the string to be encoded. The underlying C type for the OSUTFSCHAR type
isunsi gned char . Thisalowsthe entire UTF-8 character range to be represented as positive numbers.

If the -static command line parameter is specified, character string types with a maxLength or fixed length facet set
will be represented as static arrays of OSUTFSCHAR. In this case, CDATA is not supported. For example,

typedef OSUTF8CHAR string8_t[(8 * OSUTF8CHAR SI ZE) + 1];

where 8 is the maxLength or fixed length value. Macro OSUTF8CHAR_SIZE is defined to be 1 by default in
osM acr os.h. If the character size in the string is more than 1, this macro must be defined to the largest character size
in byte.

For C++, an XML string classis used:
cl ass EXTRTCLASS OSXM.StringCl ass : public OSRTBaseType {

pr ot ect ed:
OSUTF8CHAR* val ue;

32

XSD Simple Type to C/C++ Type Mappings

OSBOOL cdat a;

publi c:

/**
* The default constructor creates an enpty string.
*/
OSXMLSt ri ngd ass();
b
This class contains constructors and other methods to allow the member variables to be initialized and manipul ated.

If -usestl is used with C++ code generation, the XML STL string classis used instead of XML string class:

cl ass EXTRTCLASS OSXMLSTLStringC ass : public OSRTBaseType {
pr ot ect ed:
std::string* val ue;
OSBOOL cdat a;

publi c:

/**

* The default constructor creates an enpty string.
*/

OSXMLSTLSt ri ngd ass();

If -use-qt is used with C++ code generation, QString is used instead of OSXML StringClass.

The datamember valuein calss OSXMLSTL StringClassisan STL string (the string classfrom C++ standard template
library). To enable using the XML STL string class, HAS_STL needsto be defined.

The general mapping is as follows:
XSD type:
<xsd: si npl eType name="TypeNane" >
<restriction base="xsd:string"/>
</ xsd: si npl eType>

Generated C code:

t ypedef OSXMLSTRI NG TypeNane;

Generated C++ code:

cl ass TypeNane : public OSXM.Stringd ass {

,

33

XSD Simple Type to C/C++ Type Mappings

or, when -usestl is used:

class TypeNane : public OSXM.STLStringCd ass {

\

or, when -use-qt is used:

class TypeNane : public QString {

}

In this case, xsd:string refers to the XSD st ri ng base type and al other types that are derived from it. For C, a
variable of thistype can be populated with asimple string literal cast to aconst OSUTF8CHAR* variable asfollows:

TypeNane strval;
strval . cdata = FALSE;
strval .value = (const OSUTF8CHAR*) "nmy string";

In the case of C++, the built-in assignment operator can be used to set the string value:

strval = "my string”;
Thiswill set the cdata member to false as above and do a deep-copy of the text into the object.

Note that directly setting the value and cdata membersis no longer supported. Use the setValue and setCDATA meth-
ods, instead. Code that set these data members directly will not compile against the updated library, even if -compat
is specified.

String-based types may be further restricted through the use of facets such as | ength, minLength, maxLength, and
pattern. These have no effect on the generated C or C++ type definitions. Constraint checks are added to the generated
encoders and decoders to ensure values of the type are within the specified constraint bounds.

Enumerated Type

Note

Prior to XBinder 2.2.2, the value for an enumerated type was represented using OSUINT16. From version
2.2.2 onward, the generated enum type is now used. Either -compat 221 or else -noenumvars will restore the
old behavior. Depending on the C/C++ compiler, and the options used with it, one or the other approach may
be more space efficient.

Another facet that is frequently applied to XSD string-based typesis enumeration. This resultsin the generation of a
C enum typedef that enumerates all of the identifiers that can be used in the type.

The general mapping is as follows:

XSD type:

XSD Simple Type to C/C++ Type Mappings

<xsd: si npl eType name="TypeNane" >
<restriction base="xsd:string">

<xsd: enuner ati on val ue="enunl"/ >
<xsd: enuner ati on val ue="enun"/ >

<xsd: enuner ati on val ue="enunN'/ >

</ xsd:restriction>
</ xsd: si npl eType>

Table4.1. Generated C code

normal

with -noenumvars

/I Fields will be declared as TypeNarn
/1 TypeNane_ENUM i s declared to help
/1v2.2.1 or earlier.

typedef enum {

TypeNanme_enunil = 0O,
TypeNanme_enun2 = 1,
TypeNanme_enunN = N - 1,

} TypeNamne;

typedef TypeNane TypeNane_ ENUM

Table4.2. Generated C++ code

‘e (AhFeeldst wpk)

typedef enum {
TypeNane_enunl =
TypeNane_enun =
TypeNanme_enunN = N - 1,
} TypeNane_ ENUM

typedef OSUI NT16 TypeNane;
/I deprecat ed

normal

with -noenumvars

/1 The enumtype is used for the vald
cl ass TypeNane : public OSRTBaseType

publi c:

enum Enum {
enunl = O,
enun2 = 1,
enumN = N - 1,

P

Enum val ue;

}

e //The enumtype just defines useful |nanes.

{ class TypeNane : public OSRTBaseType

publi c:

enum Enum {
enunl = O,
enun2 = 1,
enumN = N - 1,

P

OSUI NT16 val ue;

}

Note that for C, TypeName is used on the enumerated identifiers as a namespace mechanism in order to prevent name
clashesif two or more enumerated types use the sameidentifier names. In this case, the type name may only beapartial
fragment of the full name to keep the names shorter. Thisis not a problem in C++ as the class provides a namespace

for the enumeration constants defined within (for example,
the class).

enuml would be referenced as TypeName: :enuml outside

In XSD, the rules for naming enumerated identifiers are more liberal than in the C/C++ programming language. For
example, enumerated identifiers can start with numbers or punctuation marks. The logic to transform the XSD enu-
meration names to C/C++ form makes use of the following rules to ensure the names are valid C/C++ names.

1. If dl items are numeric, no symbolic identifiers are generated. The user is expected to work with the items in

numeric form.

35

be declared as TypeNanme (OSUTI N16)
wi t h/ ipgeddimg ENUbexi sts only to define useful

nar

XSD Simple Type to C/C++ Type Mappings

2. If an enumeration identifier consists of whitespace (for example, enumeration value=" "), the special name BLANK
is used.

3. Other specia names are used for other single punctuation mark identifiers (for example, '+' = PLUS).
4. If after applying these rules, the name still has a non-alphabetic start character, the character 'X' is prepended.

5. All invalid C/C++ identifier characters are replaced with underscores (_) within the name.

Integer Types

XSD defines severa integer typesincluding i nt eger, byte, unsignedByte, positivelnteger,€tc..
Each of these typesis mapped to a C type depending on the following factors:

» Thenameof thetype (for example, unsignedByteismapped to adifferent type- OSUINT8 - thaninteger - OSINT32,
 Value range facets (minlnclusive, maxInclusive, minExclusive, maxExclusive) that are applied to the type.

By default, anxsd: i nt eger with no constraintsresultsin the generation of an"OSINT32" type which isastandard
C signed 32-hit integer type. The general mapping is as follows:

XSD type:

<xsd: si npl eType name="TypeNane" >
<restriction base="xsd:integer"/>
</ xsd: si npl eType>

Generated C code:

typedef OSI NT32 TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
OSI NT32 val ue;

}

Vauerange facetswill ater the C type used to represent a given integer value. The smallest integer type that can hold
the constrained value will always be used. For example, the following declaration declares an integer to hold a value
between 2 and 10 (inclusive):

<xsd: si npl eType name="Int_2 to_10">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="2"/>
<xsd: max| ncl usi ve val ue="10"/>
</xsd:restriction>
</ xsd: si npl eType>

In this case, a byte type (unsigned char) could be used to hold the value because it must be between 2 and 10 (asigned
byte could also be used but an unsigned value is always used whenever negative numbers are not required). Other
value ranges would cause different integer types to be used that provide the most efficient amount of storage.

36

XSD Simple Type to C/C++ Type Mappings

The <t ypemap> declarations can be used to map an integer number type to a string type. This can be done at global
or schema level. This mapping configuration can be used to preserve the format of integer numbers after decoding
and reencoding.

For example, to map xsd:short types to string:

t ypemap>
<xsdt ype>i nt eger </ xsdt ype>
<ctype>string</ctype>
</typemap>

The following table shows the types that would be used for the different range values:

Min Lower Boundl Max Upper Bound C Type (rtx) C Type (base)

-128 127 OSINTS8 char (signed 8-hit int)

0 255 OSUINT8 unsigned char (unsigned 8-
bit number)

-32768 32767 OSINT16 short (signed 16-bit int)

0 65535 OSUINT16 unsigned short (unsigned
16-bit int)

-2147483648 2147483647 2147483647 OSINT32 int (signed 32-bit
integer)

0 4294967295 OSUINT32 unsigned int (unsigned 32-
bit integer)

Real Number Types

XSD defines the following types that are mapped to the C double type:

fl oat
doubl e

deci mal
A doubleis aways used because it provides the maximum precision to hold numbers for all of the types above.
The general mapping is as follows:

XSD type:

<xsd: si npl eType nanme="TypeNane" >
<restriction base="xsd:float"/>
</ xsd: si npl eType>

Generated C code:

37

XSD Simple Type to C/C++ Type Mappings

typedef OSREAL TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
OSREAL val ue;

}

The character representation of these numeric typesin generated messages can be altered by using aconfiguration file.
This allows behavior such as preservation of leading zeros to be specified.

The <t ypemap> declarations can be used to map area number type or alist of real number types separated by space
to a string type. This can be done at global or schema level. This mapping configuration can be used to preserve the
format of floating point numbers after decoding and reencoding.

For example, to map xsd:double typesto string:
<t ypenmap>
<xsdt ype>doubl e</ xsdt ype>
<ctype>string</ctype>

</typemap>

For more information, see the XML Numeric Values Format Specification section.

Binary String Types

XSD defines the following types that are mapped to a C binary type structure:
* hexBi nary

» base64Bi nary

Thetype of structure used depends on whether or not alength facet is applied to the type. If alength facet is not used,
or the length isavery large value (> 32K), a built-in type containing a pointer to a dynamic memory buffer is used to
hold the binary data. If -x64 was specified, OSDynOctStr64 is used. Otherwise, OSDynOctStr is used. The definition
of these typesin osSysTypes.h is asfollows:

typedef struct OSDynCct Str {
OSUI NT32 nunoct s;
const OSCCTET* dat a;

} OSDynCct Str;

typedef struct OSDynCct Str64 {
OSSI ZE nunoct s;
OSOCTET* dat a;

} OSDynCct Str 64;

The numocts member holds the length of the binary string and the data member holds the actual data.

For C++, abuilt-in class definition is used that extends this structure:

38

XSD Simple Type to C/C++ Type Mappings

class OSDynCct Strd ass : public OSRTBaseType {
pr ot ect ed:
CSSl ZE nunoct s;
const OSOCTET* dat a;
publi c:
}

This class provides methods for getting and setting the data values as well as initialization through constructors and
other utility methods.

If alength facet is used that restricts the size of the binary string to a value less than 32K, a custom type is generated
that contains a static array to hold the data. The general form of thistypeisasfollows:

typedef struct TypeNane {
OSUI NT32 nunoct s;
OSOCTET dat a[| engt h] ;
} TypeNane;
If -x64 was used, numocts will be of type OSSIZE.

In this case, TypeName would be the name of the type defined in the X SD specification and length would be the value
of the length facet.

In the case of C++, aclassis generated:
cl ass TypeNane : public OSRTBaseType {

OSUI NT32 nunoct s;
OSOCTET dat a[| engt h] ;

If -x64 was used, numocts will be of type OSSIZE.

The general mappings for each case are as follows:

Dynamic Case (no length facet):
XSD type:
<xsd: si npl eType nane="TypeNane" >
<restriction base="xsd: hexBi nary"/>
</ xsd: si npl eType>
Generated C code;

typedef OSDynCct Str TypeNane; [* if -x64 is not used */
typedef OSDynCct Str64 TypeName; /* if -x64 is used */

39

XSD Simple Type to C/C++ Type Mappings

Generated C++ code:

class TypeName : public OSDynOctStrClass{ ...} ;

Static Case (length restricted to 32K or less):

XSD type:

<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd: hexBi nary" >
<xsd: | ength val ue="l ength"/>
</ xsd:restriction>
</ xsd: si npl eType>

Generated C code:

typedef struct TypeNane {

OSUI NT32 nunoct s; /* if -x64 is not used */
0SSl ZE nunoct s; /* if -x64 is used */
OSOCTET dat a[| engt h] ;

} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
OSUI NT32 nunoct s; /* if -x64 is not used */
OSSI ZE nunoct s; /[* if -x64 is used */
OSCCTET dat a[| engt h] ;

} o

Note: in the static case, the maxLength facet will cause the same code to be generated with maxLength used for the
size of the array.

Date/Time Types

By default, the xsd: dat eTi me, xsd: date, and xsd: ti nme types are mapped to character string variables.
However, if the -numDateTime command line option is selected, or a <ctype>numeric</ ctype> configuration item
is associated with a date/time type, then a reference to the following numeric structure is used:

typedef struct OSXSDDat eTi me {
OSI NT32 year;
OSUINT8 nmon; /* 1 <= nmon <= 12 */
OSUI NT8 day; /* 1 <= day <= 31 */
OSUI NT8 hour; /* 0 <= hour <= 23 */
OSUINT8 mn; /* 0 <= min <= 59*%/
OSREAL sec;
OSBOOL tz_flag; /* is tzo explicitely set? */
OSINT32 tzo; /* -1440 <= tzo <= 1440 */
} OSXSDDat eTi 1e;

40

XSD Simple Type to C/C++ Type Mappings

For C++, aclassisderived from this type (OSXSDDateTimeClass) which provide constructors and hel per methods to
mani pul ate date/time values. For example, conversions to and from system time types such astime_t and struct tmare
supported. See the XBinder C/C++ Run-time Reference Manual for more details.

The general mapping is as follows:
XSD type:
<xsd: si npl eType name="TypeNane" >
<xsd:restriction base="xsd: dateTi me"/>
</ xsd: si npl eType>

Generated C code:

t ypedef OSXSDDat eTi ne TypeNane;

Generated C++ code:

cl ass TypeNane : public OSXSDDat eTi neC ass {

o
Boolean Type

Thexsd: bool ean typeis mapped to a C unsigned char that is allowed to have the value zero for FALSE and any
other value for TRUE. The general mapping is asfollows:

XSD type:
<xsd: si npl eType nanme="TypeNane" >
<xsd:restriction base="xsd: bool ean"/ >

</ xsd: si npl eType>

Generated C code:

t ypedef OSBOOL TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
OSBOOL val ue;

}

Union Type

Anxsd: uni on typeisused to specify that one of several simple types can be used for a specific value. Thistypeis
mapped to a C structured type that contains an identifier for the selected type and a union of all of the possible types.

41

XSD Simple Type to C/C++ Type Mappings

Atomic types (i.e. those that use a single processor storage unit such as integer or Boolean) are stored as values in
the union whereas compound or structured types (such as the structure used to represent a hexBinary type) are stored
as pointers.

The general mapping is as follows:

XSD type:

<xsd: si npl eType name="TypeNane" >
<xsd: uni on nenber Types="Typel ...TypeN'/>
</ xsd: si npl eType>
Generated C code:
/* choice tag constants */
#define T _TypeNane_typel 1
#define T _TypeNane_typeN N

typedef struct TypeNane {

OSUI NT16 t;

uni on {
[*t =1 */
Typel typel;
/[*t = N*/
TypeN typeN;

}ous

} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {

public:
/1 tag constants
enum {
T typel = 1,
T_typeN = N,
b
OSUI NT16 t;
uni on {
[*t =1 *

Typel typel;
¥t = N ¥/

TypeN typeN;
by

Notes:

42

XSD Simple Type to C/C++ Type Mappings

1. Where typename begins with alowercase letter above (for example, Typel is shown as typel in places), it means
the actual typename is used with the first letter set to lowercase.

2. The choice tag constants (T_TypeName_type) are the identifiers of each of the particular valuesin the union. The
selected value is stored in the t member variable of the generated structure. In the case of C++, the tag values are
in the form of an enum construct within the class containing enumerations of the form T_type.

3. The member variables in the union may be stored as values (if atomic) or as pointers to a value of the item (if
structured).

4. The generated C++ class contains additional methods to get, set, or query the union value. These are in the form
of get_type, set_type, and is_type respectively.

List Type

Anxsd: | i st typeisused to model aspace-separated list of values of agiven type. Thistype is mapped to alinked-
list typeif itslength is unbounded, or an array type if itslength is bounded. The built-in OSRTDLi st type (run-time
doubly linked list) is the type used for repeating sequences such as this. This list type can be used with the rtxDL st
run-time functions for building and manipulating lists. See the Doubly-Linked List Utility Functions section for more
details.

In the case of C++, the built-in OSRTDListClass or OSRTObjListClasstypeisused. These classes extend the C OSRT-
DList structure and add constructors and methods for adding, finding, and removing itemsfrom thelist. The generated
C++ code contains overloaded versions of these methods that correspond to the specific type of the element within
thelist.

If -use-qt is used with C++, Qt collection classes are used instead of the linked-list classes OSRTDListClass and
OSRTObjListClass. For anxsd: | i st with anitem type of xsd: stri ng, QStringList is used.

The general C and C++ mapping for an XSD list typeis asfollows:
Unbounded Case

XSD type:

<xsd: si npl eType nane="TypeNane">
<xsd:list itenlype="Type"/>
</ xsd: si npl eType>

Generated C code:

t ypedef OSRTDLi st TypeNane;

Generated C++ code:

class TypeNanme : public OSRTDLi st d ass {

}

OR, when -use-qt is used:

43

XSD Simple Type to C/C++ Type Mappings

cl ass TypeNane : public QLinkedList < Type > {

,

Bounded Case

XSD type:

<xs: si npl eType name="TypeNane" >
<xs:restriction>
<xs: si npl eType>
<xs:list itenType="type"/>
</ xs: si npl eType>
<xs:length val ue="length"/>
</xs:restriction>
</ xs: si npl eType>

Generated C code:

typedef struct TypeNanme {

OSUI NT32 n; /* if -x64 is not used */
GsSI ZE n; /* if -x64 is used */
TYPE el enf | engt h];

} typeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
OSUI NT32 n; [* if -x64 is not used */
OSSl ZE n; [* if -x64 is used */
TYPE el en | engt h];

\

The one exception to this mapping occurs when the referenced item type is an enumeration. In this case, a structure
is generated with each enumerated item represented as a single bit. This is a more compact structure that is easier to
work with for specifying enumerated items and for validation to make sure there are no duplicates in the list. The

mapping for this specia caseisasfollows:

XSD type:

<xsd: si npl eType name="EnuniType" >
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="enuml"/ >
<xsd: enunerati on val ue="enun"/ >

<xsd: enuner ati on val ue="enunN'/ >
</ xsd:restriction>
</ xsd: si npl eType>

XSD Simple Type to C/C++ Type Mappings

<xsd: si npl eType name="TypeNane" >
<xsd:list itemlype="Enunilype"/>
</ xsd: si npl eType>

Generated C code:

typedef struct TypeNanme {
unsi gned enumlBit : 1;
unsi gned enunmBit : 1;

unsi gned enum\Bit : 1;
OSRTDLi st* _extltens;
} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
public:

unsi gned enumlBit : 1;

unsi gned enunBit : 1;

unsi gned enum\Bit : 1;
OSRTDLi st d ass* _extltens;

,

Each of the bit fields in this type represents a declared enumeration item in the XSD definition. The _extltems field
is added for extensibility purposes (i.e. if an unknown item is received it is added to this list). This construct will be
used if adeclared enumerated type is referenced (as is the case above) or if the list type contains an anonymous type

with an enumeration list.

45

Chapter 5. XSD Complex Type to C/C++
Type Mappings

XSD complex type declarations are mapped to one or more C structured types or C++ classes. The actual mappings
areinfluenced by several factorsincluding the level of nesting of complex type structures within other complex types,
facets that are applied to complex type groups and elements, and attributes that are added to the types.

The equivalent C type and C++ class definitions for each of the various XSD complex types follow.

Note that in when the mixed="true" attribute is set for a complex type, its contents will be stored as text in a string
variable named _content. Thisallowstext to appear between elements. To generate a structure with data members that
match the complex type's content model, use the -nomixed command line option to disable support for mixed content.

SEQUENCE

The XSD SEQUENCE type <xsd:sequence> is a complex type consisting of a series of element definitions. These
elements can reference other XSD types including other complex types. The elements must appear in the order they
are declared in XML instances of thistype.

In its simplest form, an XSD segquence consists of a series of element definitions that reference other types. The
equivalent C type and C++ class mapping for this is a structure that contains the equivalent type mapping for each
of the elements asfollows:

XSD type:

<xsd: conpl exType nanme="TypeNane" >
<xsd: sequence>
<xsd: el ement nane="el eml" type="Typel"/>
<xsd: el ement nane="el en2" type="Type2"/>

<xsd: el ement nane="el enN' type="TypeN'/>
</ xsd: sequence>
</ xsd: conpl exType>

Generated C code:
typedef struct TypeNane {
Typel el eni;
Type2 el en;

TypeN el en\;
} TypeNane;
Generated C++ code:
cl ass TypeNane : public OSXSDCompl exType {
publi c:
Typel el ent;
Type2 el en?;

TypeN el en\;

46

XSD Complex Type to C/C++ Type Mappings

.
Optional Elements

Elementswithin a sequence definition may be declared to be optional by using the minOccurs="0" facet. Thisindicates
that the element is not required in the encoded message. An additional construct is added to the generated code to
indicate whether an optional element is present in the message or not. This construct is a bit structure placed at the
beginning of the generated sequence structure or class. This structure always has variable name m (for ‘mask’) and
contains single-hit elements of the form ‘elemNamePresent’ as follows:

struct {
unsi gned el emNanelPresent : 1,
unsi gned el emNane2Present : 1,

bomo

In this case, the elements included in this construct correspond to only those elements marked as optional (i.e. with
minOccurs="0" facet) within the sequence group definition. If a sequence contains no optional elements, the entire
construct is omitted.

For example, the following XSD sequence definition declares one optional and one required element:

<xsd: conpl exType name="SeqW t hOpt El eni' >
<xsd: sequence>
<xsd: el ement nane="reqEl em' type="xsd:string"/>
<xsd: el ement nane="opt El enf' type="xsd:integer" minCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

The C type that is generated for this XSD typeis asfollows:

typedef struct SeqWthQOpt El em {
struct {
unsi gned opt El enPresent : 1;
}om
const OSXM.STRI NG r eqEl em
CSI NT32 opt El em
} SeqWthOpt El em

In this case, if the optElemPresent flag is set to FALSE in a variable of this type, the contents of the optElem field
will not beincluded in an encoded XML instance of the type. Similarly, after decoding, the optElemPreseent flag can
be tested to see if the message that was decoded contained this element. If this value is FALSE, the contents of the
optElemfield in the variable are undefined.

The C++ caseis similar except that the mask structure is contained within the generated C++ class definition:

class SeqWthOpt El em : public OSRTBaseType {
publi c:
struct ({
unsi gned opt El enPresent : 1;
}m
const OSXML.StringCd ass reqEl em
OSI NT32 opt El em

47

XSD Complex Type to C/C++ Type Mappings

bl

The constructors for this class (not shown) will set all bitsin the mask to zero.

Repeating Elements

Elements within a sequence definition may be declared to be repeating by using the minOccurs and/or maxOccurs
facets. Inthiscase, aC or C++ list or array container type structure is used instead of a C/ C++ element type definition.
This container holds a series of objects of the element type.

If the C element type is a simple type and the maximum number of elements (maxOccurs) is less than or equal to
10,000, then an array type of the following form is used:

struct {
OSUI NT32 n; /* if -x64 is not used */
CSSI ZE n; /* if -x64 is used */

El enType el enf maxQccur s] ;
}

In this definition, nis used to hold the count of element occurrences to be encoded (or that were decoded), and elem
holds the actual element data values.

If either of the above conditions is not true, alinked list type is used to hold a dynamic list of the data objects. This
typeis OSRTDList (run-time doubly linked list). It isdefined in rtxDList.h asfollows:

/* Doubly-linked list types */

typedef struct _OSRTDLi st Node {
const voi d* dat a;
struct _OSRTDLi st Node* next;
struct _OSRTDLi st Node* prev;
} OSRTDLi st Node;
t ypedef struct OSRTDLi st ({
OSSI ZE count ;
OSRTDLi st Node* head;
OSRTDLi st Node* tail;
} OSRTDLI st

Thereisacomplete set of functions available for adding, deleting, and traversing lists of thistype availablein therun-
time library. See the Doubly-Linked List Utility Functions section for documentation on these functions.

For C++, there are corresponding class definitions (OSRTDListClass and OSRTObjListClass) that extend the OSRT-
DList structure and contain constructors and methods for adding, removing, and finding items in the list.

For C++ with -use-qt, a Qt collection classis used.

The following example shows a sequence with two repeating elements. The first will cause an array type to be gen-
erated, the second, alist:

<xsd: conpl exType nanme="SeqW t hArrayAndLi st ">
<xsd: sequence>
<xsd: el ement nane="anArray" type="xsd:integer"
maxCccur s="10"/>
<xsd: el ement nane="aList" type="SomeQ her Type"
maxQccur s="unbounded"/ >
</ xsd: sequence>

48

XSD Complex Type to C/C++ Type Mappings

</ xsd: conpl exType>
The C type that is generated for this XSD typeisasfollows:

typedef struct SeqWthArrayAndLi st {

struct {
OSUI NT32 n; /* if -x64 is not used */
OSSl ZE n; /* if -x64 is used */
OSI NT32 el enf 10];

} anArray;

/* List of SomeQtherType */
OSRTDLi st alLi st;
} SeqWthOpt El em

Note that a comment is added to the generated C structure before the list declaration to indicate what type of objects
thelist isto contain.

In the case of C++, a constructor is added to the generated array structure to initialize the number of elements to
zero. Aninline classis generated for the list variable that extends the OSRTDListClass or OSRTObjListClass and adds
methods to append items to the list and retrieve items from the list:

cl ass SegqWthArrayAndLi st : public OSRTBaseType {

publi c:

struct anArray_array {
OSUI NT32 n; [* if -x64 is not used */
OSSl ZE n; [* if -x64 is used */

OSl NT32 el enf 10] ;
anArray_array() { n = 0; }
} anArray;
/* List of SomeQtherType */
class aList_list : public OSXSDConpl exType {
publi c:
OSRTbj Li st Cl ass nEl enLi st ;
voi d append (SomeQt her Type* pdata);
voi d appendCopy (const SonmeQt her Type* pdata);
const SomeQ her Type* getltem (int idx);
} aList;

.
The linked list memory management policy is asfollows:

1. If an item is appended to alist using the append method, the pointer to the item is stored directly in the list node
structure (i.e. a deep-copy is not done). It is assumed that this memory was dynamically allocated using the C++
new operator. The list will assume ownership of this memory upon assignment and delete the object when the list
is destroyed.

2. If an item is appended to an object list using the appendCopy method, a copy is made of the original item using
the object’s built-in clone method. The list will own the memory of the cloned item and destroy it at the time the list
is destroyed.

3. If acopy is made of the list, the list’s copy constructor will make a full copy of all itemsin the list and delete all
memory upon destruction.

If the -usestl option is specified on the command line, astd:: vector will be generated instead of aninner list class. The
vector’'s type parameter will be a pointer to the repeating type. The outer class' copy operator, copy constructor, and

49

XSD Complex Type to C/C++ Type Mappings

destructor will copy and delete items from the vector as needed. The vector should be populated with items allocated
on the free store using operator new.

If the -use-qt optionis specified onthe command line, aQt collection classwill beused instead of aninner list class. The
collection will contain a pointer type or a non-pointer type, depending on whether a) the element is nillable (requires
a pointer type) and b) whether the element's type is atomic or not (non-atomic cases require pointer types). The outer
class' copy operator, copy constructor, and destructor will copy and delete items from the vector as needed. The vector
should be populated with items allocated on the free store using operator new.

Nillable Elements

Elements may be declared nillable by usingtheni | | abl e="t r ue" facet. When an element is declared nillable, an
occurrence of that element in an XML document may have an xsi:type attribute with avalue of "true", which requires
its contents to then be empty.

XBinder models the nilled status of elements according to the following rules:
« If the element is simple type, anull pointer represents a nilled element.

« If the element is complex type and non-repeating, then afield is added to the"m" structure of the type that contains
the element. It is named <element_name>Nil.

* If the element is complex type and repeating, then an OSDynOctStr is used to hold a string of bits, each bit repre-
senting a nil flag for one of the occurrences of the element. In this case, helper methods are generated for setting
and getting the nilled status for each occurrence of the element.

The signatures of the helper methods depend on the language and whether the nillable elements appear in a choice
group:

/1 C signatures for elenments in a choice group
int <Type> setNi | (OSCTXT* pctxt, <Type>* pvalue, size t index, OSBOOL val
OSBOOL <Type>_ i sN | Set (<Type>* pval ue, size t index);

/1 C signatures for elenments in sequence or all group
int <Type> <el enent>_set Ni | (OSCTXT* pctxt, <Type>* pval ue, size_ t index,
OSBOCL <Type>_<el ement >_i sNi | Set (<Type>* pval ue, size_t index);

/1 C++ signatures for elenents in a choice group
int setNil(size_t index, OSBOOL val ue);
OSBOOL i sNi |l Set (size_t index);

/1 C++ signatures for elenents in sequence or all group
int <elenment> setNi|(size_t index, OSBOOL val ue);
OSBOOL <el erent > i sNi | Set (size_t index);

In the following example, a sequence "nilsinSequence” has four nillable elements: one_int is a non-repeating, simple
type element; many_int is a repeating, simple type element; one_complex is a non-repeating, complex type element;
and many_complex is arepeating, complex type element.

The generated C code would resemble the following:

t ypedef struct nilslnSequence {

50

ue);

OSBOOL val ue

XSD Complex Type to C/C++ Type Mappings

struct ({

/I Flag for one_conplex's nilled state

unsi gned one_conplexNi | : 1;
}m
/[* String of flags for many_complex's nilled states */
OSDynCct Str many_conpl exN | Fl ags; [* if -x64 is not used */
OSDynCct Str 64 many_conpl exN | Fl ags; [* if -x64 is used */

OSRTDLi st many_conpl ex;

//null pointer represents a nilled one_int el enment
OSI NT32 *one_int;

/Inull pointers represent a nilled many_int el enent

struct {
OSUI NT32 n; /* if -x64 is not used */
OSSl ZE n; /* if -x64 is used */
OSINT32 *elen...];

} many_int;

} nilslnSequence;

/] Speci fy whether a given occurrence of many_conplex is nilled or not.
/1 (index is O-based).
i nt nilslnSequence_many_conpl ex_set Ni | (

OSCTXT* pctxt, nilslnSequence* pval ue, size_t index, OSBOOL val ue);

/1 Check whet her a given occurrence of many_conplex is nilled or not.
OSBOOL ni | sl nSequence_nmany_conpl ex_i sNi | Set (ni | sl nSequence* pval ue,
size_t index);

The generated C++ code would resemble the following:

cl ass nil sl nSequence : public OSXSDConpl exType {
publi c:

/Inull pointers represent a nilled many_int el enent
struct many_int_array : public OSRTBaseType {
OSl NT32 *elenf...];

bl

many_int_array many_int;

struct {
/I Flag for one_conplex's nilled state
unsi gned one_conplexNi | : 1;

}om
. MyConpl ex *one_conpl ex;

51

XSD Complex Type to C/C++ Type Mappings

/1String of flags for many_conplex's nilled states
OSDynCct Str many_conpl exN | Fl ags;
many_conpl ex_I i st many_conpl ex;

/I null pointer represents a nilled one_int el ement
OSI NT32 *one_int;

/] Speci fy whether a given occurrence of many_conplex is nilled or not.
/1 (index is O-based).
int many_conpl ex_setNi | (size_t index, OSBOOL val ue);

/1 Check whet her a given occurrence of many_conplex is nilled or not.
OSBOOL many_conpl ex_i sNi | Set (si ze_t index);

b

Nested Types

It is possible to nest other X SD sequence or choice content model groups within another sequence. For example, it is
possible to nest a sequence definition within another sequence definition as follows:

<xsd: conpl exType name="A">
<xsd: sequence>
<xsd: el enent nane="x" type="xsd:string"/>
<xsd: sequence m nCccurs="0">
<xsd: el enrent name="y" type="xsd:integer"/>
<xsd: el emrent nanme="2z" type="xsd: bool ean"/>
</ xsd: sequence>
</ xsd: sequence>
</ xsd: conpl exType>

In this example, the type has three elements — x , y, and z. A nested SEQUENCE is used with the y and z elements
to indicate the group is optional.

The XBinder compiler recursively pullsall of the nested content model groups (i.e. the embedded sequence and choice
definitions) out of the sequence type to form a series of types that contain only asingle level of elements. The names
of the newly formed types are of the form BaseTypeName_Swhere BaseTypeName is the name of the main type and
Sisthe sequential position of the element within the construct.

Note: The format of newly formed type name was changed from XBinder v1.0.x. Previoudly, the format was
BaseTypeName L xS, where L was the nesting level and S the relative sequence number. This was found to
cause ambibuous names in some situations, ther efore the format was changed. Users of the older version can
still generate namesin thisform by using the -compat 1.0 command-line switch.

For example, in the definition above, the following two C types are generated to model the X SD type above:

typedef struct A 2 {
OSI NT32 vy;
OSBOCL z;

} A2

52

XSD Complex Type to C/C++ Type Mappings

typedef struct A {

struct ({
unsi gned _seq2Present : 1;
}m
const OSUTF8CHAR* X;
A 2 _seq2;
P A

Inthis case, XBinder created the type A_2 to represent the inner sequence. It then added the _seq2 element to the main
Ctypeusing thistype. Thisallowsall of the elementsin theinner sequence to be managed as agroup in the generated
code. Thisis particularly useful if the element group is optional or repeating.

The C++ generated code is similar except that items are in the form of class definitions instead of structures.

Any Element

An element in a sequence can be declared using the xsd:any keyword to indicate that an element of any type can be
present in that position. An example of this type of construct is as follows:

<xsd: conpl exType nanme="SeqW t hAny" >
<xsd: sequence>
<xsd: el ement nane="a" type="xsd:string"/>
<xsd: any processContents="1ax"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, the element ais followed by another element with any name and of any type. The processContents="lax"
attribute tells a schema processor to do lax validation processing on the element in this position — something that is
of no concern to the XBinder compiler.

The generated C type definition for thistypeis asfollows:

typedef struct SeqWthAny {
OSXMLSTRI NG a;
OSXMLSTRI NG _any;

} SeqWt hAny;

C++ issimilar except that the standard class pattern is used:

cl ass SeqWthAny : public OSRTBaseType {
public:

OSXMLStri ngd ass a;

OSXMLStri ngCl ass _any;

b

In this case, the compiler has inserted an OSXMLSTRING typed element to represent the any field. This contains a
UTF-8 character string containing the complete XML text string value.

An example code snippet that could be used to populate a C variable of thistype for encoding is as follows:

const OSUTF8CHAR* anyData = (const OSUTF8CHAR*)
"<anyData>this is test data</anyData>";
SegqW t hAny t est Seq;

53

XSD Complex Type to C/C++ Type Mappings

test Seq. a. val ue = (const OSUTF8CHAR*)"test string”;
t est Seq. _any. val ue = anyDat a;

ALL

The XSD ALL type <xsd:all> is a complex type consisting of a series of element definitions. These elements can
reference other XSD types including other complex types. The main difference between this construct and a sequence
is the elements can appear in any order (in a sequence, they must appear in the order they were declared).

The C type definition that is generated for an ALL isidentical to that for a SEQUENCE above except for the addition
of an order array. This array is added to control the order in which the elements are encoded. It appears as a special
element within the generated C structure or C++ class as follows:

typedef struct TypeNane {
el ements ...

/* encoding control */
OSUI NT8 _order[n];
} TypeNane;

The C initialization function for the type or C++ constructor will set this array to sequential order. A user can then
alter this order if they would like to encode the elementsin a different order. Also, on decode, the order the elements
werereceived inis preserved inthisarray. That way, if the instance is reencoded, the elements will appear in the same
order asin the origina instance.

CHOICE

The XSD CHOICE type <xsd:choice> isacomplex type consisting of a series of element definitions from which one
may be selected to include in amessage instance. It is converted into a C or C++ structured type containing an integer
for the choice tag value (t) followed by a union (u) of all of the equivalent types that make up the CHOICE elements.

The tag value is simply a sequential number starting at one for each alternative in the CHOICE. For C, a #define
constant isgenerated for each of thesevalues. Theformat of thisconstantisT_TypeName_elemNamewhere TypeName
isthe name of the XSD complexType and elemName is the name of the CHOICE alternative. For C++, an enumerated
type is added to the class with enumerations of the form T_elemName.

The union of choice aternatives is made of the equivalent C or C++ type definition followed by the element name
for each of the elements. The rules for element generation are essentially the same as was described for SEQUENCE
above. Constructed types or el ements that map to C structured types are pulled out and temporary types are created.
Names for elements that are not named (e.g., for an inline content group) are automatically generated when needed.

The general mapping is as follows:
XSD type:

<xsd: conpl exType nanme="TypeNamnme" >
<xsd: choi ce>
<xsd: el ement nane="el enl" type="Typel"/>
<xsd: el ement nane="el enR" type="Type2"/>

<xsd: el ement nane="el enN' type="TypeN'/>
</ xsd: choi ce>

XSD Complex Type to C/C++ Type Mappings

</ xsd: conpl exType>
Generated C code:

/* choice tag constants */
#define T_TypeNane_eleml 1
#define T_TypeNane_elen? 2
#define T_TypeNane_el emN N

typedef struct TypeNanme {

OSUI NT16 t;

uni on {
[*t =1 %
Typel el eni;
[*t =2 %
Type2 el en?;
/*t = N*/
TypeN el en\;

Pou

} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSXSDCompl exType {

publi c:
enum {
T elem 1
T elen? 2
T elemN N
b
OSUI NT16 t;
uni on {
[*t =1 %
Typel el ent;
[*t =2 %
Type2 el en?;
/*t = N*/
TypeN el en\;
by
b

In most cases, the generated elements within the C++ union construct will be pointersto dynamic variables rather than
inline static value references.'One exception to thisrule is if the referenced type of the element is a simple, atomic
type such as an integer. The reason for using pointers is to keep the size of the structures small (otherwise, it will be
sized to fit the largest possible variable size even if that aternative is not being used) and to avoid problems with C+
+ constructor invocations if C++ types with constructors are referenced within the union.

A second exception isfor nillable elements of simpletype. In that case, a pointer typeis used so that anull pointer can
be used to represent anilled element. See the discussion of nillable elements under the section on sequences above.

IFor C, inline static value references are used. Thisis for historical reasons.

55

XSD Complex Type to C/C++ Type Mappings

Itispossibleto nest X SD sequence or choice content model groupswithin achoice model group. Therulesfor handling
this are as described in the handling of nested types for sequence above.

Generated C++ Get/Set Methods

For C++, methods are generated to assist the user in getting, setting, or querying the choice construct variable. These
methods are of the form get_elemName, set_elemName, and is_elemName where elemName would be replaced with
the name of the element. The get method will return apointer to the choiceitem only if it isthe selected item; otherwise
it will return null. Theis method returns aboolean value of trueif the element isthe sel ected element or false otherwise.
The set method sets the element to the given value and selectsiit by setting the t value.

C Example

The following is a common example of a choice construct with a nested sequence. This allows element a or element
b or both elements to be present in an XML instance of the type:

<xsd: conpl exType name="AO BOr Bot hType" >
<xsd: choi ce>
<xsd: sequence>
<xsd: el enent nane="a" type="xsd:string"/>
<xsd: el enrent nane="b" type="xsd:string"
m nCccur s="0"/>
</ xsd: sequence>
<xsd: el enent nane="b" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

The generated C code for thistypeis as follows:

typedef struct AO BOrBothType_1 {
struct {
unsi gned bPresent : 1;
}m
OSXMLSTRI NG a;
OSXMLSTRI NG b;
} AO BOrBot hType_1;

/* choice tag constants */
#define T_AO BO Bot hType__seql 1
#define T_AO BO Bot hType_b 2

t ypedef struct AOrBOrBot hType {

OSUI NT16 t;
uni on {
[*t =1 *
AO BOr Bot hType_1 * seql;
[*t =2 *]
OSXMLSTRI NG* b;
}ous

} AOrBOr Bot hType;

In this case, XBinder created the type AOrBOrBothType 1 to represent the inner sequence. It then added the _seql
element to the main C type using this type. A user populating the structure would use the _seql element to specify
element a or both and would use the b element to specify choice b.

56

XSD Complex Type to C/C++ Type Mappings

C++ Example
The C++ code generated for the example schema above is as follows:

cl ass AOBOrBot hType_1 : public OSXSDCompl exType {
publi c:
struct {
unsi gned bPresent : 1;

}om

OSXMLSt ri ngd ass a;
OSXMLSt ri ngCd ass b;

,

cl ass AOBOrBot hType : public OSXSDCompl exType {
publi c:
/] tag constants
enum {
T_seqgl = 1,
Tb=2
b
OSUI NT16 t;
uni on {
[*t =1 %
AO BOr Bot hType_1 *_seql;
[*t =2 %
OSXMLSt ri ngCl ass *b;
Pou

i nline AOBOrBot hType_1* get__seql () {
return u._seql,
}
inline OSBOOL is__seql () {
return (t == T__seql);
}
void set__seql (const AOrBOrBot hType_ 1& val ue);

inline OSXMLStringC ass* get_b () {
return u.b;
}
inline OSBOOL is_b () {
return (t == T_b);
}
void set_b (const OSXM.StringC ass& val ue);

s

This shows the generated get/set methods as well as the generated member variablesin the class. If the user wanted to
set the class to the nested sequence value, the setseql method could be used. If the user wanted to determineif the b
element was selected in the class and then get the value, the following code snippet could be used (object is assumed
to be an instance of the AOr BOr Bot hType class):

if (object.is_b()) {

57

XSD Complex Type to C/C++ Type Mappings

OSXMLSt ri ngCl ass* val ue = object.get_b();
}

Substitution Groups

Substitution groups are very similar to choice types. They allow a given base element (refered to as the substitution
group head) to be replaced with a different element. The replacement element is designated as being part of the group
through the use of the X SD substitutionGroup attribute.

For example, the following element declarations declare a group in which the head element (Publication) would be
replaced with either the Book element or Magazine element:

<xsd: el enent nane="Publication" abstract="true"
type="Publ i cationType"/>

<xsd: el ement nane="Book" substituti onG oup="Publication"
t ype="BookType"/ >

<xsd: el ement nane="Magazi ne" substituti onG oup="Publication"
t ype="Magazi neType"/ >

In these declarations, the types BookType and MagazineType must be derived from the substitution group head type (in
this case, PublicationType). This now allows Book or Magazine to be used anywhere where Publication was declared
to be used (in fact, the elementsin this case must be Book or Magazine because Publication was declared to be abstract
and therefore cannot appear in an XML instance).

XBinder generates a specia type to hold each of the substitution group aternative elements. Thisis a C struct type
containing an integer tag value (t) that identifies the substitution alternative followed by a union (u) of all of the
alternative element types. Thisisidentical to the mapping for the X SD choice type described in the previous section.

The format of the name for the special typeis*“_<element>SG", where <element> would be replaced with the name
of the substitution group head element. In the example above, the generated type name would be “_PublicationSG".

The general mapping is as follows:
XSD type:

<xsd: el ement nane="El emNane" type="El enType"/>

<xsd: el ement
nane="Al t Namel"
substituti onG oup="El enNane"
type="Alt Typel"/>

<xsd: el enment
nane="Al t Name2"
substituti onG oup="El enNane"
type="Alt Type2"/>

<xsd: el enment
nane="Al t NameN'
substituti onG oup="El enNane"
type="Alt TypeN'/>

58

XSD Complex Type to C/C++ Type Mappings

Generated C code:

/* choice tag constants */

#define T__El emNaneSG _El emNanme 1
#define T__El emNaneSG Al t Nanel 2
#define T__El emNaneSG Al t Nane2 3

#define T__El emNaneSG Al t NameN N+1

typedef struct _El enNaneSG {

OSUI NT16 t;

uni on {
[*t =1 %/
El enifype El emNane;
[*t =2 %]
Al t Typel Al tNanel;
[*t =3 %/

Al t Type2 At Nane2;

[* t = N+1 */
Al t TypeN Al t NaneN,;
}ous
} _El enNaneSG,
Generated C++ code:

cl ass _El emNameSG : public OSRTBaseType {

publi c:
enum {
T _El emNane 1
T_Alt Nanmel 2
T_Alt NameN N
I
OSUI NT16 t;
uni on {
[*t =1 %
El enifype El emNane;
[*t =2 %
Al t Typel AltNamel,;
[* t = N+1 */
Al t TypeN Al t NameN;
P
b
Notes:

1. If the substitution group head element is abstract, then an entry will not be added to the generated type for it. This
is because it cannot be used in an XML instance of the type.

2. The choice tag constants (T_TypeName_type) are the identifiers of each of the particular values in the union. The
selected value is stored in the t member variable of the generated structure. In the case of C++, the tag values are
in the form of an enum construct within the class containing enumerations of the form T_type.

59

XSD Complex Type to C/C++ Type Mappings

Attributes

The XSD ComplexType syntax allows for the specification of attributes that can be added to the start element tag for
an XML instance of the type. XBinder handles attributes the same way it does normal elements. They are added as
typed fields to the C struct or C++ class definition for the complex type.

The general mapping is as follows:
XSD type:

<xsd: conpl exType nane="TypeNane" >
<xsd: gr oup>

</ xsd: gr oup>
<xsd:attribute nane="attr1" type="Typel"/>
<xsd:attribute nane="attr2" type="Type2"/>

<xsd:attribute nane="attrN' type="TypeN'/>
</ xsd: conpl exType>

Generated C code:

typedef struct TypeNane {
group type definition..

/* attributes */
Typel attr1;
Type2 attr2;

TypeN attrN;
} TypeNane;

Generated C++ code:
cl ass TypeNane : public OSXSDConpl exType {
public:
group type definition..

/* attributes */
Typel attr1;
Type2 attr2;

TypeN attrN;

\

In the definition above, group can be any content model group type (seguence, al, choice, or group). It is an optional
item —it is possible to omit the group completely to form atype with empty content that only contains attributes.

Attributes are optional by default and are handled in the same way as optional elements. A hit is added to the optional
bit mask at the beginning of the structure with the name attrPresent (where attr is the attribute name). This bit is set
to trueif the attribute is to be added to a message instance or falseif it isto be omitted.

60

XSD Complex Type to C/C++ Type Mappings

Attributes that contain adefault or fixed value are handled by modifying theinitialization and/or encode/decode func-
tions. A default value will be handled by adding a statement to theinitialization function for the typeto set the attribute
to the default value. The user can later override this value in order to change it in a message instance.

A fixed value also causes a statement to be added to the generated C initialization function or C++ constructor to set the
attribute to the given fixed value. Unlike default value, it is not possible to override this value. The generated encode
function contains hard-coded logic to ignore the value in the type variable and encode the fixed value. On the decode
side, the incoming value will be checked to make sure it equals the fixed value. If not, an error will be flagged and
the value set to the fixed value in the typed variable.

ComplexContent

The XSD ComplexContent type <xsd:complexContent> is used to create a modified version of a base type through
extension or restriction mechanisms. It issimilar in concept to creating derived typesin Javaor C++. ComplexContent
is handled differently depending on whether C or C++ code is being generated. For C, the type is converted into aC
structured type containing a base element (_base) and, optionally, an extensions element (_ext) and additional attribute
elements. The extension element will only appear if the extension mechanism is used to add additional elementsto an
existing content model group (sequence, all, or choice).

In addition to the standard type that is generated to hold the type' s content, aspecial derivationstypeisalso generated.
Thisisgenerated in a separatefile called <project>Derivations.h. Thistype is based on the base type of the derivation
(i.e. the complexContent base element) and contains a union of all of the possible types that are derived from a given
base. A reference to thistype is used in all place where the base type is referenced. This makes it possible to handle
type susstituition through the XML schema instance type attribute (xsi:type).

For C++, two distinct derivation models are supported - the extended and interface models.

The extended model is the model that was used in XBinder up to version 1.4. It is the model that would seem most
natural in dealing with complexContent extensions. The generated base class contains all elements and attributes that
were defined to exist in the base. The generated class for the complexContent type then inherits from this base class
and adds whatever extended elements or attributes were added via the extension mechanism.

It was discovered, however, that thismodel could not cover al of the complexContent use casesin C++. In particular,
certain types of complexContent restrictions caused problems, especially when the base class contained wildcards
such as xsd:any Type or xsd:anyAttribute. The result was a very generic base type which was ill-suited for use with
the special restriction cases. For this reason (and also for wishing to avoid the use of C++ multiple inheritance), the
interface model was devel oped.

In the interface model, the inheritance mechanism is used with the generated derivations classes to make type substi-
tution possible. All content items (elements and attributes) for agiven complexContent type are aggregated in the gen-
erated class and then the derivations class is used as the base class. The derivations classis fully abstract - it contains
no data items. It's purpose is to act as an interface specification does in Java, it provides only a placeholder for the
use of any of the concrete classes that can be used in the type.

XBinder 2.0 and higher nows supports both models. Either can be explicitly chosen by using the -derivModel com-
mand line switch or corresponding GUI option. If this option is nhot used, a model is automatically selected based on
the schema being compiled. In general, if the schema being compiled contains no complexContent restrictions, the
extended model will be chosen.

Element Extension

The general mapping for complexContent with an extension element group is as follows:

XSD type:

61

XSD Complex Type to C/C++ Type Mappings

<xsd: conpl exType nanme="TypeNanme" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="BaseType">
<xsd: gr oup>
<xsd: el ement nane="el eml" type="Typel"/>
<xsd: el ement nane="el enR" type="Type2"/>

<xsd: el ement nane="el enN' type="TypeN'/>
</ xsd: gr oup>
</ xsd: ext ensi on>
</ xsd: conmpl exCont ent >
</ xsd: conpl exType>

Generated C code:

typedef struct TypeName 2 {
group type definition.
} TypeNane_2;

typedef struct TypeNane {
BaseType base;
TypeNane_2 ext;

} TypeNane;
typedef struct BaseType_derivations {
OSUI NT16 t;
uni on {
[*t =1 */
struct BaseType *baseType;
[*t =2 */
struct TypeNanme *typeNane;
Py

} BaseType_derivati ons;
Generated C++ code (extended model):

cl ass TypeNane_2 : public OSXSDConpl exType {
group type definition.
b

cl ass TypeNane : public BaseType {
publi c:

TypeNane_2 _ext;

b

Generated C++ code (interface model):

cl ass TypeNanme : public BaseType_derivations {
public:

group type definition.
} .

cl ass BaseType_derivations : public OSXSDConpl exType {
publi c:
BaseType_derivations () {}

62

XSD Complex Type to C/C++ Type Mappings

.
Notes:
1. groupinthe extension group definition above can be any content model group type (sequence, all, choice, or group).

2. In the case of C and C++ extended, the extension group is pulled out to form the temporary type (TypeName_2).
Theinternals of this type depend on the content group type.

3. Inthe case of C++ interface, al content items (attributes and elements) are contained in the derived class.
Example: Extension Elements

The following complexContent type contains a choice of two additional elements that were not defined in the base
type (ProductType):

<xsd: conpl exType nane="Shirt Type">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Product Type">
<xsd: choi ce>
<xsd: el ement nanme="si ze" type="Si zeType"/>
<xsd: el ement nane="col or" type="Col or Type"/>
</ xsd: choi ce>
</ xsd: ext ensi on>
</ xsd: conmpl exCont ent >
</ xsd: conpl exType>

The following are the C typedefs that are generated for this definition:

#define T_ShirtType_ 2 size 1
#define T_Shirt Type_2 color 2

typedef struct EXTERN ShirtType_ 2 {

OSUI NT16 t;
uni on {
[*t =1 %
Si zeType si ze;
[*t =2 %
Col or Type col or;
P

} ShirtType_ 2;

typedef struct EXTERN Shirt Type {
Pr oduct Type _base;
Shirt Type_2 _ext;

} ShirtType;

#def i ne T_Product Type_derivati ons_product Typel
#defi ne T_Product Type_derivations_shirtType2

struct EXTERN Product Type;
struct EXTERN Shirt Type;

63

XSD Complex Type to C/C++ Type Mappings

typedef struct EXTERN Product Type_derivations {

OSUI NT16 t;
uni on {
[*t =1 %
struct Product Type *product Type;
[*t =2 %
struct ShirtType *shirt Type;
by

} Product Type_derivations;
The case of C++ with the extended model is similar:

class ShirtType : public Product Type {
publi c:
/] tag constants
enum {
T size = 1,
T color = 2

b
/**
* ShirtType nmenber vari abl es
*/
OSUI NT16 t;
uni on {
[*t =1 %
Si zeType *size;
[*t =2 %
Col or Type *col or;
Pou

In the case of the C++ interface model, all content items are added to the ShirtType class and the classis derived from
the ProductType_derivations base class:

cl ass EXTERN ShirtType_ 2 : public OSXSDConpl exType {

publi c:
/] tag constants
enum {
T size = 1,
T color = 2
b
OSUI NT16 t;
uni on {
[*t =1 %
:: SizeType *si ze;
[*t =2 %
:: Col or Type *col or;
P
b
cl ass EXTERN Shirt Type : public Product Type_derivations {
publi c:

:: ProdNunTType nunber;
OSXMLSt ri ngCl ass nane;
::ShirtType_2 _ext;

XSD Complex Type to C/C++ Type Mappings

,

/**

* Types derived fromthis base type:

* Product Type

* ShirtType

*/
cl ass EXTERN Product Type_derivations : public OSXSDConmpl exType {
publi c:

(no content). .

b
Attribute Extension

It is possible to extend a base type to contain additional attributes. In this case, the additional attribute definitions are
added to the structure generated for the complexContent type.

The general mapping for complexContent with extension attributesis as follows:
XSD type:

<xsd: conpl exType name="TypeNane" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="BaseType" >
<xsd:attribute name="attr1" type="Typel"/>
<xsd:attribute name="attr2" type="Type2"/>

<xsd:attribute name="attrN' type="TypeN'/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Generated C code:

typedef struct TypeNanme {
BaseType base;

[* attributes */
Typel attrl,
Type2 attr2;

TypeN attrN,
} TypeNane;

Generated C++ code:

cl ass TypeNane : public BaseType {
[* attributes */
Typel attrl,
Type2 attr2,

TypeN attrN,

65

XSD Complex Type to C/C++ Type Mappings

}

In this case, the attributes are handled the same as they were in the Attributes section above. If any are optional, an
optional bit mask is added at the beginning of the complexContent structure. Logic to handle fixed and default values
is added to the initialization and encode/decode functions.

Restrictions

Itispossibleto restrict elements and attributesin an existing content model group by using the restriction element. For
either elements or attributes, it is possible to exclude optional items from the derived content model. It isa so possible
to restrict wildcards (any or anyAttribute) to contain values of a given type. It is also possible to further restrict facets
such as minOccurs and maxOccurs to specify anarrower range than was defined in the base type.

As of XBinder version 1.2, restricted types are handled by generating a completely new type definition containing
only therestricted items. In previous versions, the generated type contained only a single base element that referenced
the base type.

As of XBinder 1.4, the restricted type is now included in the generated derivations type for the items. This makes
it possible to successfully decode an item that referecnes the base type and uses an xsi:type attribute to select the
restricted type for substitution.

The general mapping is as follows:
XSD type:

<xsd: conpl exType name="TypeNane" >
<xsd: conpl exCont ent >
<xsd:restriction base="BaseType">

</xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Generated C code:

typedef struct TypeNanme {
restricted elenments/attributes from BaseType
} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
restricted elenments/attributes from BaseType

b
SimpleContent

The XSD simpleContent type <xsd:simpleContent> is used to create amodified version of a base type through exten-
sion or restriction mechanisms. It is similar in concept to creating derived types in Java or C++. The simpleContent
type is a complex type whose content model is a simple type. As a complex type, it may include attributes.

For C, the simpleContent type isrepresented with a C structured type containing a base element (_base) for the (simple
type) content model and fields for any defined attributes.

66

XSD Complex Type to C/C++ Type Mappings

For C++, aclassisgenerated, derived from OSXSDComplexType, with amember variable called value for the (ssimple
type) content model and fields for any defined attributes.

Extensions

Theonly purpose of simple content extensionsisto add attributesto an existing basetype. The basetype must either bea
complex typewith simpleContent, or asimpletype. Inthefollowing example, let SmpleBaseType be the representation
for the simple type that is the content model for TypeName.

The general mapping is as follows:
XSD type:

<xsd: conpl exType nanme="TypeNane" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="BaseType" >
<xsd:attribute name="attr1" type="Typel"/>
<xsd:attribute name="attr2" type="Type2"/>

<xsd:attribute name="attrN' type="TypeN'/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

Generated C code:

typedef struct TypeNanme {
Si npl eBaseType _base;

[* attributes */
Typel attrl;
Type2 attr2;

TypeN attrN;
} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSXSDConpl exType {
/1 The sinpl eType extended by si npl eCont ent
Si npl eBaseType val ue;
/* attributes */
Typel attr1i;
Type2 attr2;

TypeN attrN;

_—
Restrictions

Simple content restrictions are used to restrict the simple content and/or attributes of a complex type. As of XBinder
version 1.2, restricted types are handled by generating a completely new type definition containing only the restricted

67

XSD Complex Type to C/C++ Type Mappings

items. (In previous versions, the generated type contained only a single base element that referenced the base type.)
In the case of a simpleContent restriction, we have to represent a content model consisting of asimple type, and zero
or more attributes. We do thisjust asis done for simpleContent extensions.

Note: XML Schema allows the <xsd:restriction> element to have an <xsd:simpleType> child (in some cases, it is
actually required). XBinder does not currently support this.

Derivations

Thederivationstypeisaspecia type generated by the XBinder compiler that collects all possible alternativesfor XSD
complexContent types. Its purposeisto allow handling of XML instancesin which the type of the content is not known
until run-time and isidentified through the special xsi:type attribute. For C, it issimilar to a CHOICE construct in that
it contains a union of all possible alternatives. For C++, a single base element is generated that uses inheritance and
polymorphism as the mechanism to identify derived alternatives.

The general mapping is as follows:
XSD type:

<xsd: conpl exType name="TypeNanel">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="BaseType" >

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="TypeNane2">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="BaseType">
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
Generated C code:
/* choice tag constants */
#define T_TypeNane_eleml 1
#define T_TypeNane_elen? 2
#define T_TypeNane_el emN N

typedef struct BaseType_derivations {

OSUI NT16 t;

uni on {
[*t =1 %
Typel el ent;
[*t =2 %
Typel el en?;
/*t = N*/
TypeN el en\;

68

XSD Complex Type to C/C++ Type Mappings

by
const OSUTF8CHAR* _xsi Type;
} TypeNane;
Generated C++ code:

cl ass BaseType derivations :
publ i ¢ OSXSDConpl exType

{

(no content - abstract interface only)

\ e

Group

The XSD group type <xsd:group> is used to create a reusable content model group. This is similar in concept to
the creation of a standalone type and is handled in the C or C++ language mapping as such. A group declaration is
tranglated into aC type or C++ class definition. Thistype definitionisthen usedin placeswherethe group isreferenced.

The general mapping is as follows:
XSD type:

<xsd: group nanme="TypeNane" >
XSD content group definition .
</ xsd: gr oup>

Generated C code:

typedef struct TypeNanme {
group type definition..
} TypeNane;

Generated C++ code:

cl ass TypeNane : public OSRTBaseType {
group type definition..
b

Any Type

Types defined in the XSD asany Ty pe are generated as a structure which stores attributes and textual content. In C,
which uses the OSXSDAnyType struct, the textual content is represented by an OSXMLSTRING, and the attributes are
stored in an OSRTDList of OSAnyAttr*. C++ uses the OSXSDAnyTypeClass, which stores the textual content in an
OSXMLSTRING, and the attributes in an OSRTObjListClass of OSAnyAttrClass*.

The general mapping is as follows:
XSD type:

<xsd: conpl exType name="TypeNane" >
<restriction base="xsd: anyType"/>
</ xsd: si npl eType>

Generated C code:

69

XSD Complex Type to C/C++ Type Mappings

typedef OSXSDAnyType TypeNane;

Generated C++ code:

cl ass TypeNane : public OSXSDAnyTypeCd ass {

b
For C, avariable of thistype can be populated as follows:

TypeNane anyTypeVal ;

OSAnyAttr* pAnyAttr;

anyTypeVal . val ue. cdat a = FALSE;

anyTypeVal . val ue. val ue = (const OSUTF8CHAR*) “<content>a</content>";
pAnyAttr = rtxMemAl | ocType (pctxt, OSAnyAttr);

pAnyAttr->name = (const OSUTF8CHAR*) “attrnane”;

pAnyAttr->val ue = (const OSUTF8CHAR*) “attrval ue";

rt xDLi st Append (pctxt, &anyTypeVal.attrs, (void*) pAnyAttr);

In the case of C++, avariable of this type can be populated as follows:

TypeNane anyTypeVal ;

OSRTbj Li st Cl ass* pList = anyTypeVal .get AttrListPtr();

OSAnyAttrd ass* pAttr = new OSAnyAttrC ass (“attrnane”, “attrval ue");
anyTypeVal . set Val ue (“<content >a</content>");

pLi st - >appendCopy (pAttr);

This will set the cdata member to false as above, do a deep-copy of the text into the object, and do a deep-copy of
the attribute into the object.

70

Chapter 6. Configuration File

The default bindings of source schema components to a C/C++ types as presented above may not meet the require-
ments of all applications. In such cases, the default bindings can be customized by using a configuration file. Thisis
sometimesrefered to asabinding schemain similar products. A configuration file contains binding declarations which
are specified by a binding language, the syntax and semantics of which are defined in this section.

Binding Language

The binding languageisan XML based language that defines constructs referred to as binding declarations. A binding
declaration can be used to customize the default binding between an XML schema component and its C/C++ repre-
sentation.

The schemafor binding declarations is defined in the namespace http: //mww.obj-sys.conyXBConfig.

Binding Declaration

The configuration file format enables customized binding without requiring modification of the source schema. The
schema component to which the binding declaration applies must be identified explicitly. Minimally, a configuration
fileis of the following format.

<bi ndi ngs version="1.0">
<schemaBi ndi ngs nanmespace | schemalLocati on = "xsd: anyURl ">
<nodeBi ndi ngs nane | node = "xsd:string">*
<node bi ndi ngs decl arati on>
<nodeBi ndi ngs>
</ schemaBi ndi ngs>
</ bi ndi ngs>

The schemaBindings node has the attribute namespace or schemal ocation to refer to a schema. The namespace at-
tributeis used to specify aschemausing itstarget namespace. The schemal ocation attribute specifices aschemausing
its physical file location.

The nodeBindings node has the attribute name and node to construct a reference to a node within the schema. The
name attribute specifies anode using its QName. The node attribute uses an X Path expression to specify a set of nodes.

A summary of these attribute values is as follows:

namespace: A reference to a schema s target namespace.
schemal ocation: A URI reference to an XML schema document.
name: The qualified name (QName) of a node within the schema.

node: An XPath 1.01 expression that identifies the schema node within a schema with which to associate binding
declarations.

1. XML Pat h Language (XPath) Version 1.0 (http://ww. w3. org/ TR/ xpat h)

An example of aconfiguration file can be found in the section “ Configuration File Example”.

Version Attribute

Thenormative hinding schemaspecifiesaglobal ver si on attribute. Thisisused to identify the version of the binding
declarations. For example, a future version of this specification may use the version attribute to specify backward

71

Configuration File

compatibility. For thisver si on of the specification, the version must always"1. 0". If any other version is specified,
the configuration file will be skipped.

Thever si on attribute must be specified in the root element <bi ndi ngs> in the configuration file:

<bi ndi ngs version="1.0" ... />

Configuration File Language Overview

A binding declaration customizes the default binding of a schema element to a C/C++ representation. The binding
declaration defines one or more customization values each of which customizes apart of C/ C++ representation.

Scope

When acustomization valueisdefined in abinding declaration, it isassociated with ascope. A scope of acustomization
value is the set of schema elementsto which it applies.

The defined scopes are as follows:

» global scope: A customization value defined in <bi ndi ngs> has global scope. A global scope covers al the
schema elements in the source schema and (recursively) any schemas that are included or imported by the source
schema

» schemascope: A customizationvaluedefinedin<schemaBi ndi ngs> hasschema scope. A schemascope covers
al the schema elements in the target namespace of a schema.

» nodescope: A customization valuedefinedin<nodeBi ndi ngs> hasnode scope. A node scope coversall schema
elements that reference the type definition, the global declaration or the local declaration.

A customization value defined in one scope is inherited for use in a binding declaration covered by another scope as
shown by the following inheritance hierarchy:

* A schema element in schema scope inherits a customization value defined in global scope.
A schema element in node scope inherits a customization value defined in schema or global scope.

Likewise, acustomization value defined in one scope can override a customization value inherited from another scope
as shown below:

* A vauein schema scope overrides a value inherited from global scope.

 #valuein node scope overrides a value inherited from schema scope or global scope.

Global <bi ndi ngs> Declaration

The customization values in the “<bi ndi ngs>" binding declaration have global scope. These affect al elements
within all schemas defined in the compilation project.

Usage

<bi ndi ngs version="1.0">
[<prefix>xs:token</prefix>]
[<schemaBi ndi ngs>. . .</schenmaBi ndi ngs>]
[<nameXm Transforme. . . </ naneXm Transf or np]
[<doubl eFor mat / >]
[<deci mal For mat / >]
[<f| oat For mat/ >]
[<typemap>. . .</typenmap>]

72

Configuration File

[<reservedWords>. . .</reservedWrds>]

</ bi ndi ngs>

The following attributes are defined for the <bindings> node:

version

See the section “Version Attribute” above for details.

The following customization elements may be defined within the global scope:

prefix

Thisisused to specify aprefix that isprepended to all XML namesincluding type names
and global element namesto form C/C++ type and variables names. It should be alegal
C/C++ identifier.

schemaBindings

Thisis used to identify individual schemas for schema scope binding declarations (see
Section “<schemaBi ndi ngs> Declaration”). It can be specified multiple times, but
once per schema.

nameXml Transform This is used to perform more accurate XML names transformation than prefix allows.
See Section “ Advanced XML Names Transformation” for further details.

doubleFormat This specifies a default (global) format for encoding of values of “double* type. See
Section “XML Numeric Values Format Specification”.

decimal Format This specifies a default (global) format for encoding of values of “decimal“ type See
Section “XML Numeric Values Format Specification”.

floatFormat This specifies adefault (global) format for encoding of values of “float” type. See Sec-
tion “XML Numeric Values Format Specification”.

typemap This specifies a default (global) mapping of a specific XSD type to a C type (see Sec-
tion “<t ypemap> Declaration”). It can be specified multiple times. In each typemap
declaration, alist of XSD types separated by space can be mapped to one C type.

reservedWords This element is used to add additional reserved words to the reserved words list. These

are words that are defined in the output target language (for example, C or C++).
XBinder will alter these words when they are defined in a schema file so their is not
aname clash in the output file. By default, all reserved words documented in the C or
C++ standard are included in this table, but it is sometimes necessary to add additonal
words for language extensions used by specific compilers. For example, Visual C++
contains other keywords besides those defined in the ANSI standards.

The reserved word list is specified as a space-separated list of words.

<schemaBi ndi ngs> Declaration

The customization valuesin <schemaBi ndi ngs> binding declarations have schema scope. These apply to all ele-
ments within the referenced XML schema document.

Usage

<schemaBi ndi ngs nanmespace | schenalLocati on="xs:anyURl ">
[<prefix>xs:token</prefix>]
[<sour ceFi | e>xs: anyURI </ sour ceFi | e>]
[<nameXm Transfornme. . . </ naneXm Transf or np]
[<doubl eFor mat / >]
[<deci mal For mat / >]
[<f| oat For mat/ >]
[<nodeBi ndi ngs>. . .</nodeBi ndi ngs>]

73

Configuration File

[<typemap>. . .</typenmap>]

[<cppNanespace>. . .</cppNanespace>]

</ schemaBi ndi ngs>

The following attributes are defined for <schenmaBi ndi ngs> node:

namespace:

A URI reference to a schema's target namespace. The
processor will look at the target namespace in al of the
schemas currently being compiled for a match with the
given namespace. When an X SD document without a tar-
getNamespace is included into an XSD document with a
targetNamespace, it takes on the including document'star-
getNamespace. Thisfact is taken into account.

schemal_ocation:

URL as it is wused in <xsd:inport> or
<xsd: i ncl ude> statements. When this dternative is
used, <sour ceFi | e> should be provided, to map the
schema URL to an actual schemafile. No other child ele-
ments should be present. To specify other options, use an
<schemaBindings> element with a nhamespace attribute.
XBinder does not have the capability to automatically ref-
erence schemas remotely; therefore, any imported or in-
cluded schemas must have been downloaded in advance
and be present on the user’s computer.

The following customization values are defined in schema scope:

prefix:

This is used to specify a prefix that is prepended to all
XML names including type names and global element
names to form C/C++ type and variables names. It should
be alegal C/C++ identifier.

sourceFile:

The actual schema file path. XBinder does not have the
capability to automatically reference schemas remotely;
therefore, any imported or included schemas must have
been downloaded in advance and be present on the user’s
computer. This element is used to map a schema URL to
afile onthelocal system.

nameXml Transform:

Thisisused to perform more accurate XML names trans-
formation than prefix allows. See Section “Advanced
XML Names Transformation” for further details.

doubleFormat:

This specifies a schema-level format for encoding of val-
ues of “double” type. See Section “XML Numeric Values
Format Specification”.

decimal Format:

This specifies a schema-level format for encoding of val-
uesof “decimal” type See Section “ XML Numeric Values
Format Specification”.

floatFormat:

This specifies a schema-level format for encoding of val-
ues of “float" type. See Section “XML Numeric Values
Format Specification”.

nodeBindings:

Node scope binding declarations (see Section “<node-
Bi ndi ngs> Declaration”). This element can be speci-
fied multiple times, but only once per definition.

74

Configuration File

typemap: This specifies a default (global) mapping of a specific
XSD typeto aC type (see Section “<t ypemap> Declara-
tion”). It can be specified multiple times. In each typemap
declaration, alist of XSD types separated by space can be
mapped to one C type.

cppNamespace: This specifies the C++ namespace to use in generated
caode. This option only takes effect when the -cppNs com-
mand line option is used. The namespace given using -
cppNswill serve asadefault C++ namespace that is over-
ridden for particular schema components using this con-
figuration option.

<nodeBi ndi ngs> Declaration

The customization values in the <nodeBi ndi ngs> binding declaration have node scope. These refer to individual
type or element definitions within a schema. It is also possible to reference local elements within complex types for
customization.

Usage

<nodeBi ndi ngs nane | node="xs:string”>
[<prefix>xs:token</prefix>]
[<nameXm Transfornme. . . </ naneXm Transf or np]
[<array [maxSize="xs:nonNegativel nteger”/>]]
[<i sBi gl nt eger/>]
[<i sDynami c/ >]
[<ctype> string | nuneric | QinkedList | Qist | Qvector | QVarlLengthArray </ct
[<noPat t er nTest/ >]
[<noEncoder/ >]
[<noDecoder/ >]
[<nurericFormat>. . .</numericFormat>]
[<nodeBi ndi ngs>. . .<nodeBi ndi ngs>]

</ nodeBi ndi ngs>

The following attributes are defined for <nodeBi ndi ngs> node:

name: This attribute selects a node for configuration processing
based on its QName.
node; An XPath 1.0 expression that identifies the schema node

within the referenced schema with which to associate
binding declarations

The following customization values are defined in node scope:

nameXmlTransform: Thisis used to perform more accurate XML names trans-
formation than prefix alows. See Section “Advanced
XML Names Transformation” for further details.

prefix: This is used to specify a prefix that is prepended to all
XML names including type names and globa element
names to form C/C++ type and variables names. It should
be alegal C/C++ identifier.

75

Configuration File

array: This specifies that an array should be used instead of a
linked list for repeated elements. The maxSze attribute
specifiesthe maximum size of the array. The default value
if not specified is 100.

isBiglnteger: This specifies that this type will be used to store an in-
teger larger than the C or C++ int type on the given sys-
tem (normally 32 bits) or even the 64-hit integer type if
supported (long long, or __int64). A C UTF-8 string type
(OSUTF8CHAR*) will be used to hold atextual represen-
tation of the value. This qualifier can be applied to either
an integer or complex type. In the latter case, all integer
elements within the complex type are flagged as big inte-
gers.

isDynamic: Thisindicates that dynamic storage (i.e., pointers) should
be used everywhere within the generated types where use
could result in lower memory consumption.

ctype: Thisisused to specify aspecific C type be used in place of
the default definition generated by the X Binder compiler.

For date and time types, X Binder generates string types. It
is possible to use a built-in C structure for these typesin-
stead of strings. In this case ctype should contain the value
numeric for the appropriate nodes.

For repeating elements, the Q* options can be used to
specify the Qt collection classto use for that element. Be-
sides allowing you to specify a particular Qt collection
classto use for an element, this can aso force the use of a
Qt collection where an array would have otherwise been

used.
noPatternTest: If type uses a pattern facet, this may be used to turn off
the pattern match test.
noEncoder: This may be used to turn off generating encode functions.
noDecoder: This may be used to turn off generating decode functions.
numericFormat; This specifies anode-level format for encoding of numer-

ic values. Affect on values of “double’, “decima” and
“float” types. See Section “XML Numeric Vaues Format
Specification”.

nodeBindings: Nested nodeBindings declarations to allow more accurate
references to enclosed elements such aslocal elementsin-
side groups (sequence, all, choice, group, etc).

<t ypenmap> Declaration

The customization valuesin <t ypenap> binding declarations are used to map a specific XSD type or alist of XSD
types separated by space to a C type. This can be done at global or schemalevel. This mapping configuration can be
used to preserve the format of floating point numbers after decoding and reencoding.

Usage

<t ypenmap>

76

Configuration File

[<xsdtype>. . .<xsdtype>]
[<ctype>. . .<ctype>]
</typemap>

<xsdtype> is used to specify the XSD Type being mapped, and <ctype> is used to specify the C Type. For example,
to map xsd:decimal, xsd:double and xsd:float types to string:

<t ypemap>
<xsdt ype>deci mal doubl e fl oat </ xsdt ype>
<ctype>string</ctype>

</typemap>

It is possible to specify multiple mappings.

Advanced XML Names Transformation

The advanced XML names transformation allows a prefix or suffix to be added to type or element names.
Usage

nameXn Tr ansf or np

[<typeNanme [prefix="xs:token”] [suffix="xs:token”]/>]

[<el enent Name [prefix="xs:token”] [suffix="xs:token”]/>]
</ nameXm Tr ansf or np

It is possible to specify separate prefixes and suffixes for type names and element names. If <t ypeNamne> is used
then values of the optional attributes “prefix” and “suffix” will be applied to all custom types in the scope of this
transformation. If <elementName> is used then prefix and suffix will be applied to element names.

XML Numeric Values Format Specification

These qualifiers are used to customize the encoding format of numeric values (XSD double, decimal, or float types).
It is sometimes necessary to have numbers formatted in a certain way (for example, a decimal value format such
as'+0012.00"). By default, all leading and trailing zeros are omitted, as well as the positive sign, so the value above
will be encoded as “12”. It is possible using these qualifiers to specify the exact required format of such values. This
can be done at any scope - global, schema or node. To customize the format of al decimal, double or float values at
theglobal or schemalevel, usethe<deci nal For mat >, <doubl eFor mat > and <f | oat For mat > configuration
elements respectively. For the node scope, use <nuner i cFor mat > element.

Usage

<deci mal Format | doubl eFormat | floatFormat | nunericFor nmat
[total Di gits="xs:byte"]
[fractionDigits="xs:byte"]
[fracti onM nDi gits="xs: byte”]
[i nt eger MaxDi gi t s="xs: byte”]
[integer M nDi gi t s="xs: byte”]
[expSynbol =" xs: t oken”]
[expM nVal ue="xs: short”]
[expMaxVal ue="xs: short”]
[expDi gi t s="xs: byte”]
[si gnPresent =" xs: bool ean”]
[poi nt Present =" xs: bool ean”]

77

Configuration File

[expSi gnPresent =" xs: bool ean”]
[expPresent =" xs: bool ean”]

>

All attributes are optional, the order is not important.

Attribute name Applicable types Description

total Digits double float decimal Number of total significiant digits.
Trailing and leading zeros are not
counted by this parameter.

fractionDigits double float decimal Number of maximum signficiant dig-
itsin fraction part, precision.

fractionMinDigits double float decimal Number of minimum digitsinthefrac-
tion part. If the fraction part has less
digits than this parameter then trailing
zeros will be added.

integer MaxDigits double float decimal Maximum digitsin integer part; if itis
0 and integer part is 0 then integer part
will be omitted, for example .3, or -.3.

integer MinDigits double float decimal Minimum digits in integer part, lead-
ing zeros will be added if necessary.

expSymbol double float Exponent symbol. 'E' or '€ only; O if
no exponent is expected.

expMinValue double float Maximum exponent value. By default,
-infinity.

expMaxValue double float Maximum exponent value. By default,
infinity.

expDigits double float Number of digits in exponent part; if
exponent's value is not enough, trail-
ing zeros will be added.

signPresent double float decimal Indicates (“true” or “false”), sign must
be present, even if value is positive.

pointPresent double float decimal Indicates (“true” or “false”), decimal
point must be present, even if value's
fractionisO

expPresent double float Indicates (“true” or “false”), exponent
must be present, even if itsvalueisO.

expSgnPresent double float Indicates (“true” or “false”), exponent

sign must be present, even if its value
is positive.

So, to format adecimal value“12” as*

<nuneri cFormat fracti onM nDi gi ts="2"

signPresent="true"/>

+0012.00" the configuration element for node should ook as follows:

Configuration File Example

The following is an example of a configuration file for aframework consisting of two schemas:

i ntegerM nbDi gi ts="4"

78

Configuration File

<bi ndi ngs version="1.0">
<schemaBi ndi ngs
schenaLocat i on=
"http://ww. oasi s-open. org/ conm ttees/ ebxn - msg/ schema/ envel ope. xsd" >
<sour ceFi | e>C: \ XBi nder\ dev\ xsd\ SOCAP\ envel ope. xsd</ sour ceFi | e>

<prefi x>SOAP_</ prefi x>

<nodeBi ndi ngs node="//xsd: el enent [@ane=' nyd obal El em] ">
<prefix>CGE_</prefix>
<ct ype>nuneri c</ctype>
</ nodeBi ndi ngs>
</ schemaBi ndi ngs>

<schemaBi ndi ngs schemaLocati on="cor e- schema. xsd" >

<nodeBi ndi ngs node="//xsd: el ement [@ane=" Manifest']">
<pr ef i x>Dsi g</ prefix>
</ nodeBi ndi ngs>

<nodeBi ndi ngs nane="per sonnel Recor d" >
<prefix>zzZZ </ prefix>
</ nodeBi ndi ngs>

<nodeBi ndi ngs node="//xsd: conpl exType[@ane="' Dss_Parns']" >
<nodeBi ndi ngs node=".//xsd: el enent [@ane="p']">
<i sBi gl nt eger/ ></ nodeBi ndi ngs>
<nodeBi ndi ngs node=".//xsd: el enent [@ane="q']">
<i sBi gl nt eger/ >
</ nodeBi ndi ngs>
<nodeBi ndi ngs node=".//xsd: el enent [@ane="qg']">
<i sBi gl nt eger/ >
</ nodeBi ndi ngs>
</ nodeBi ndi ngs>
</ schemaBi ndi ngs>
</ bi ndi ngs>

79

Chapter 7. Generated C Encode/Decode
Functions

XBinder generates C encode functions to transform data from a populated C structure into an XML message instance.
This process is known as marshalling or serialization in similar products. It generates decode functions to parse data
from an XML message instance and store the datain a variable of the generated C structure. Thisis known as unmar -
shalling or deserialization in other applications.

Thefollowing sectionsdescribe proceduresfor using the X Binder generated functionsto encode and decode XML data.

Preparing C Data Variables for Encoding

Before data can be encoded, the C structure for a given data type must be populated. In most cases, this involves the
simpleassignment of dataitemsto the elementswithin the structure. | n some cases, however, dynamic memory pointers
areinvolved. It is necessary to know how dynamic memory worksin the run-timein order to populate these fields.

Dynamic Memory Management

The XBinder run-time uses several different memory management schemes in order to provide flexibility in handling
different types of application's memory requirements. The following are the schemes available in this release:

» Standard
* Nibble-Allocation
e Custom

The standard memory allocation agorithm simply maps XBinder run-time function calls directly to the C standard
run-time memory functions malloc, free, and realloc . (Note: in some environments such as some embedded RTOS's
the realloc function may not be available. The built-in run-time provides a custom implementation of this function
using malloc and free for these cases). The advantages of standard management are simplicity and space-optimization.
The primary disadvantage is performance - frequent calls to malloc and free can be detrimental to performance.

The nibble-allocation algorithm is designed to improve performance in the case where frequent requests for small
amounts of memory are made. This is typical of many data-binding applications due to unconstrained types being
declared within the schema. The way this algorithm works is large blocks of memory are alocated up front and then
split up to provide memory for smaller alocation requests. This reduces the number of calls required to the C malloc
and free functions.

Finally, it is possible for auser to build in his or her own custom management by implementing the functions defined
within the standard X Binder run-time memory management interface.

Themain entry pointsto the memory management system for usersarethertxMemAlloc, rixMemFree, rtxMemFreePtr,
and rtxMemRealloc functions. These are the functions that should always be used for doing memory management -
not the built-in C memory functions.

For more information on memory management, see the section "Memory Management Functions' in the chapter "C
Common Runtime Library" of this manual.

Populating Generated Structure Variables for Encoding

Prior to calling a compiler generated encode function, a variable of the type generated by the compiler must be pop-
ulated. This is normally a straightforward procedure - just plug in the values to be encoded into the defined fields.

80

Generated C Encode/Decode Functions

However, things get more complicated when more complex, constructed structures areinvolved. These structures fre-
guently contain pointer types which means memory management issues must be dealt with.

There are two alternatives for managing memory for these types:
1. Allocate the variables on the stack and plug the address of the variablesinto the pointer fields,
2. UsethertxMemAlloc and rtxMemFreePtr run-time library functions or their associated macros.

Allocating the variables on the stack is an easy way to get temporary memory and have it released when it is no longer
being used. But one hasto be careful when using additional functions to populate these types of variables. A common
mistake isthe storage of the addresses of automatic variablesin the pointer fields of a passed-in structure. An example
of thiserror is asfollows (assume A, B, and C are other structured types):

typedef struct {
A* a;
B* b;
C c;

} Parent;

void fillParent (Parent* parent)

{
A aa,
B bb;
C cc;
/* logic to popul ate aa, bb, and cc */
parent->a = &aa;
parent->b = &bb;
parent->c = &cc;
}
main ()
{
Par ent parent;
fillParent (&parent);
encodeParent (&parent); /* error: pointers in
parent reference menory
that is out of scope */
}

In this example, the automatic variables aa, bb, and cc go out of scope when the fillParent function exits. Yet the
parent structure is still holding pointers to the now out of scope variables (this type of error is commonly known as
"dangling pointers").

Using dynamic memory for the variables solves this problem. The rtxMemAlloc call can be used to allocate memory
for each of the dynamic fields. The rtxMemFree function is used to rel ease all memory held within the context at once.
This is typically done after the populated variable is encoded. The rtxMemFreePtr function can be used to free an
individual memory element.

81

Generated C Encode/Decode Functions

It is recommended that these functions be used instead of the standard C memory management functions so that if the
underlying memory management schemeis changed (see Dynamic Memory Management above) all memory handling
within the application is changed to the new scheme without any recoding being required.

Accessing Encoded Message Components

After a message has been encoded, the user must obtain the start address and length of the message in order to do
further operations with it. Before a message can be encoded, the user must describe the buffer the message is to be
encoded into by specifying a message buffer start address and size. There are three different types of message buffers
that can be described:

1. satic: thisisafixed-size byte array into which the message is encoded
2. dynamic: in this case, the encoder manages the allocation of memory to hold the encoded message
3. stream: inthis case, the encoder writes the encoded data directly to an output stream

The static buffer case is generally the better performing case because no dynamic memory alocations are required.
However, the user must know in advance the amount of memory that will be required to hold an encoded message.
Thereis no fixed formula to determine this number. XML encoding involves the additions of tags and attributes and
other decorationsto the provided data that will increase the size beyond the initial size of the popul ated data structures.
Theway to find out is either by trialand- error (an error will be signaled if the provided buffer is not large enough) or
by using avery large buffer in comparison to the size of the data.

In the dynamic case, the buffer description passed into the encoder isanull buffer pointer and zero size. Thistellsthe
encoder that it isto allocate memory for the message. It does this by allocating an initial amount of memory and when
this is used up, it expands the buffer by reallocating. This can be an expensive operation in terms of performance -
especialy if alarge number of reallocations are required. For this reason, run-time helper functions are provided that
allow the user to control the size increment of buffer expansions. Seethe C/C++ Run-Time Library Reference Manual
for a description of these functions.

In either case, after amessageisencoded, it is necessary to get the start address and length of the message. In the static
buffer case for XML, the start address of the messageis simply the start address of the buffer. But in the dynamic case,
afunction call isrequired to get the start address of the message after encoding is complete. The rtXmlGetEncBufPtr
function is provided for this purpose.

Generated XML Encode Functions

Standard XML C encode functions are generated when the -xml switch is specified on the command line (the other
option is stream-oriented XML encoder functions which are generated when both -xml and -stream are specified). For
each generated C type, a C XML encode function is generated. This function will convert a populated C variable of
the given type into an XML encoded message.

Generated C Function Format and Calling Parameters

Generated encode functions are written to a .c file with aname of the following format:
xsdFi | eNane>Enc. ¢ or
<wsdl Fi | eName>WSDLENc. ¢

where <xsdFileName> is the base name of the XSD file being parsed; and <wsdlFileName> is the base name of the
WSDL file being parsed. For example, if code is being generated for file x.xsd, encode functions for each type and

82

Generated C Encode/Decode Functions

global element defined in the specification will be written to XEnc.c. If the file being processed is a WSDL file, the
suffix would be WSDLENc.c (for example, x.wsdl would produce X\WSDLEnNc.c).

The format of the name of each generated XML encode function is as follows:

[<ns>] Xm ET_<t ypeNane>

where <t ypeNane>is the name of the C type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate element names from multiple sources (note: this should not be
confused with XML namespaces which are different).

The calling sequence for each encode function is as follows:

status = <encodeFunc>
(OSCTXT* pctxt, <name>[*] value, const OSUTF8CHAR* el enNane,
OSXMLNanespace* pNS);

In this definition, <encodeFunc> denotes the encode function name defined above.

The pct xt argument is used to hold a context pointer to keep track of encode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

The val ueargument contains the value to be encoded or holds a pointer to the value to be encoded. Thisvariableis
of the type generated from the XSD type. The object is passed by value if it is an atomic XSD simple type such as
boolean, integer, etc.. It is passed using a pointer reference if it is a structured type value (in this case, the name will
be pvalue instead of value). Check the generated function prototype in the header file to determine how this argument
isto be passed for a given function.

The elemName argument is used to pass an XML element name for the type. This name is what is included in the
<name> </name> brackets used to delimit an XML item. If anull pointer (0) is passed in for this argument, then no
name wrapper is added to encoded XML item.

The pNSargument is used to specify namespace information. The structure contains a prefix and uri field. If prefix is
set to NULL and uri is set to astring, the encoder will attempt to find the current prefix assigned to the URI by using
internal namespace tables. If prefix is not null, the value in the structure is used without doing a URI lookup. If anull
pointer is passed, no prefix is added to element name.

Thefunction result variable st at returnsthe status of the encode operation. Status code O (zero) indicates the function
was successful. A negative value indicates encoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

Generated C Encode Functions for Global Elements

For each global element defined within an XSD specification, a specia encode function is generated. Thisisidentical
to the encode function for X SD types described above except that the name is formed using the element name instead
of the type name and the function does not contain an el emName argument. In this case, elemName is set to the name
specified in the XSD global element definition. The encode function name prefix in this case is XmE_ instead of
XmIET _in order to avoid name clashes when types and global elements have the same name.

These functions are the normal entry points when encoding complete XML message instances. All of the sample
programs use a global element definition to define the top-level message to be encoded for a particular application.

83

Generated C Encode/Decode Functions

Generated C Encode Functions for WSDL Operations

Web service description language (WSDL) documents may contain operation definitions in portType and binding
sections. An encode function is generated for each operation input, output or fault (optional) defined in binding section
in the following format:

[<ns>] Xm E_<oper Name>_| nput
[<ns>] Xm E_<oper Nanme>_CQut put
[<ns>] Xm E_<oper Name>_Faul t

where <oper Nane>isthe name of the WSDL operation name and <ns>is an optional namespace setting that can be
used to disambiguate element names from multiple sources (note: this should not be confused with XML namespaces
which are different).

Note: if there are duplicate operation names in differenct portType sections within one WSDL source file, the first
operation uses only the operation name, and other operation(s) with the duplicate names use a fully qualified name
which consists of portType name, and operation name.

The calling sequence for aWSDL operation encode function is as follows:

status = <encodeFunc> (OSCTXT* pctxt, <nanme>[*] val ue);

In this definition, <encodeFunc> denotes the encode function name defined above. The pctxt argument is a pointer to
a context structure. The value or pvalue argument is the item to be encoded either passed by value or pointer. These
arguments and the return status value are the same as previous described for C type encode functions.

Generated C Encode Functions for DOM Encoding

It is possible with X Binder to encode a populated data structure to a W3C-compliant Document Object Model (DOM)
structure instead of directly to XML. This is done by using the -dom command-line switch. When this is done, the
suffix _toDOM is added to generated encode functions.
The calling sequence is also changed to contain a pointer to a Document root node object:
[ns] Xm Enc_<el enNane>_t oDOM (OSCTXT* pct xt ,
<typeNane>[*] val ue, OSRTDOWNodePtr* ppRoot Node) ;
The root node is a generic object pointer that points to the head of the DOM tree. It is defined in domAPI.h be a

void pointer. A concrete DOM implemention would define the actual structure. The default DOM implementation in
domAPI.c defines a mapping to the libxml2 DOM implementation.

Procedure for Calling a Generated C Encode Function

The encode function generated for an XSD global element definition is the normal entry point for encoding an XML
document. The general procedure for calling agloba element encode function is as follows:

1. Prepare a context variable for encoding
2. Initialize an encode message buffer or stream to receive the encoded XML data

3. Populate the data variable with data to be encoded

Generated C Encode/Decode Functions

4. Call the appropriate compiler-generated encode function to encode the message
5. If amessage buffer was used, get the start pointer and length of the encoded message

Before a C XML encode function can be called; the user must initialize a context variable. Thisis avariable of type
OSCTXT. Thisvariable holds all of the working data used during the encoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtXmlInitContext function:

OSCTXT ctxt;/* context variable */
if (rtXmlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf ("context initialization failed (check license)\n");
return -1,

}

The next step is to specify an encode buffer or stream into which the message will be encoded. This is accomplished
by calling the rtXml SetEncBufPtr run-time function (for a message buffer) or one of the rtxStream functionsto create
an output stream. If amessage buffer isto be used, the user has the option to either pass the address of abuffer and size
allocated in hisor her program (referred to as astatic buffer), or set these parametersto zero and let the encode function
manage the buffer memory allocation (referred to as a dynamic buffer). Better performance can normally be attained
by using a static buffer because this eliminates the high-overhead operation of allocating and reallocating memory.

XBinder currently supports encoding in UTF-8, UTF-16 and 1SO-8859-1. By default, the enocded XML message is
in UTF-8 encoding. To encode the XML message in UTF-16 or 1SO-8859-1 encoding, use the rtXml SetEncodingStr
run-time function. For example:

rt Xm Set Encodi ngStr (&t xt, (OSUTF8CHAR*)" UTF- 16LE");

After initializing the context and populating avariable of the structure to be encoded, an encode function can be called
to encode the message. If the return status indicates success, the run-time library function rtXmlGetEncBufPtr can be
called to obtain the start address of the encoded message. In the static case, thisis simply the start address of the static
buffer. In the dynamic case, thisfunction will return the pointer to the allocated memory buffer. The memory allocated
for a dynamic buffer will be freed when either the context is freed (rtxFreeContext) or all memory associated with
the context isreleased (rtxMemFree) or the buffer memory is explicity released (rtxMemFreePtr).

In the stream case, the pointer to the encoded message generally cannot be obtained since the message has already
been written to the stream. The only thing necessary to do in this case isto close the stream after encoding is compl ete.
Use the rtxStreamClose function which should be called before the rtxFreeContext function.

A program fragment that could be used to encode an employee record is as follows:

#i ncl ude "enpl oyee. h"
#defi ne MAXVMSGLEN 1024

int main (int argc, char** argv)
{
Per sonnel Record enpl oyee;
OSCTXT ct xt;
OSOCTET msgbuf [MAXMSGLEN] ;
int i, stat;

85

Generated C Encode/Decode Functions

const char* filename = "nmessage. xm";
/[* Init context */
stat = rtXm I nitContext (&ctxt);
if (0 !=stat) {
printf ("Context initialization failed.\n");

rtxErrPrint (&ctxt);
return stat;

}

/* Popul ate structure of generated type */
I nit_Personnel Record (&ctxt, &enployee);
logic to populate structure here ...
/* Encode */
stat = rtXm Set EncBuf Ptr (&ctxt, msgbuf, sizeof(nsgbuf));

if (0 == stat)
stat = Xm E_personnel Record (&ctxt, &enpl oyee);

if (0 == stat) {
printf ("encoded XM. nessage:\n");
printf (nmsgbuf);

printf ("\n");
}
el se {
printf ("Encoding failed\n");
rtxErrPrint (&ctxt);
return stat;
}

logic to process encoded nessage (wite to file, etc.)

rt xFreeCont ext (&ctxt);

This example used a static message buffer. The encoded XML text will reside in the msgbuf message buffer when
the procedure compl ete.

A program fragment that could be used to encode an employee record to afile stream is as follows:

#include "rtxsrc/rtxStreanFile. h"
#i ncl ude "enpl oyee. h"

int main (int argc, char** argv)

{

Per sonnel Record enpl oyee;

OSCTXT ct xt;

int stat;

const char* filename = "nmessage. xm";

86

Generated C Encode/Decode Functions

}

/* Init context */

stat = rtXm I nitContext (&ctxt);

if (0 !=stat) {
printf ("Context initialization failed.\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Popul ate structure of generated type */
I nit_Personnel Record (&ctxt, &enployee);

logic to populate structure here ...
/* Encode directly to output stream*/

stat = rtxStreanfFileCreateWiter (&ctxt, filenane);
if (0 !=stat) {
printf ("Streaminitialization failed.\n");
rtxErrPrint (&ctxt);
return stat;

}

stat = Xm E_personnel Record (&ctxt, &enpl oyee);

if (0 !=stat) {
printf ("Encoding failed\n");
rtxErrPrint (&ctxt);
return stat;

}

rtxStreantl ose (&ctxt);

rt xFreeCont ext (&ctxt);

return O;

Generated XML Decode Functions

Two different types of XML decode functions may be generated using XBinder:

1. Pull-parser based. These use a custom pull-parser run-time for decoding.

2. SAX based. These provide a standard interface to third party SAX-based XML parsers.

Pull-Parser Based Decode Functions

An XML pull-parser works by allowing auser to "pull" selected eventsfrom an XML stream asit isparsed. Thisdiffers
from the SAX model which is sometimes referred to asa "push” parser because event callbacks are executed (pushed)
asthe stream is parsed. The pull model offers significant advantages for a data binding type application because it is
easier to maintain state between operations. This results in less required code to do the decoding which in turn leads
to improved performance. It is also conceptually easier to understand because the function call model more closely

approximates the model used for encoding.

87

Generated C Encode/Decode Functions

Generated C Function Format for XSD Types

Generated C pull-parser decode functions are written to a .c file with a name of the following format:

<xsdFi | eNane>Dec. c or
<wsdl Fi | eName>W5DLDec. ¢

where <xsdFileName> is the base name of the XSD file being parsed; and <wsdlIFileName> is the base name of the
WSDL file being parsed. For example, if code is being generated for file x.xsd, decode functions for each type and
global element defined in the specification will be written to xDec.c . If the file being processed is a WSDL file, the
suffix would be WSDLDec.c (for example, x.wsdl would produce X\WSDLDec.c).

The format of the name of each generated XML decode function is as follows:

[<ns>] Xm DT_<t ypeNanme>

where <t ypeNane>is the name of the C type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate element names from multiple sources (note: this should not be
confused with XML namespaces which are different).

The calling sequence for each decode function is as follows:

stat = <decodeFunc> (OSCTXT* pctxt, <typeNane>* pval ue);
In this definition, <decodeFunc> denotes the decode function name defined above.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. This is a basic "handle"
variable that is used to make the function reentrant so it can be used in an asynchronous or threaded application. The
user isrequired to supply a pointer to avariable of this type declared somewherein his or her program.

Thepval ueargument is a pointer to avariable of the decode function type to receive the decoded data.

Thefunction result variable st at returnsthe status of the decode operation. Status code O (zero) indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

A key difference between SAX-based functions and pull-parser based is that a decode function is not generated for
all typesin the SAX case. That is because of the overhead invlolved in setting up the SAX parser to decode simple
types. Most simple types are decoded inline as part of more complex types. This is an example of a case where the
pull-parser model more closaly follows the encode model.

Generated C Function Format for XSD Global Elements

The generated C function format for global elementsisidentical to that of the SAX case:

[<ns>] Xm D_<el enNane>

The calling arguments are &l so the same:

stat = <decodeFunc> (OSCTXT* pctxt, <typeNanme>* pval ue);

This allows pull-parser or SAX-based decoding to be interchanged with minimal code changes.

88

Generated C Encode/Decode Functions

The procedure for calling thistype of decode function is described below in the section entitled "Procedurefor Calling
C Decode Functions'. The procedure for calling pull-parser based functions is the same as was the case for SAX-
based functions.

Generated C Function Format for Project Level Factory Function

The generated C factory decode function format is similar to that of the global element decode function:

[<ns>] Xml D_Pr oj ect _<prj Name>

The caling arguments are :

stat = <decodeFunc> (OSCTXT* pctxt, <prjNane> nessage*
pval ue) ;

The procedure for calling thisfactory decode function is described below in the section entitled "Procedurefor Calling
C Decode Functions'.

Generated C Decode Functions for WSDL Operations

Web service description language (WSDL) documents may contain operation definitions in portType and binding
sections. A decode function is generated for each operation input and output in the following format:

[<ns>] Xm D_<oper Nane>_| nput
[<ns>] Xm D_<oper Nane>_CQut put

where <oper Nane>isthe name of the WSDL operation name and <ns>is an optional namespace setting that can be
used to disambiguate element names from multiple sources (note: this should not be confused with XML namespaces
which are different). Note: if there are duplicate operation names in one WSDL source file, the first operation uses
only the operation name, and other operation(s) with the duplicate names use a fully qualified name which is consist
of operation name, input name and output name.

When Request-response primitives are used, the calling sequence for a WSDL input operation decode function is as
follows:

status = <decodeFunc> (OSCTXT* pctxt, <name>* pval ue);

The calling sequence for aWSDL output operation decode function is as follows:

status = <decodeFunc> (COSCTXT* pctxt, <name>* pval ue,
<fault nanme>* pfault);

In this definition, <decodeFunc> denotes the decode function name defined above. The pct xt argument is used to
hold a context pointer to keep track of decode parameters. Thisis a basic "handle" variable that is used to make the
function reentrant so it can be used in an asynchronous or threaded application. The user isrequired to supply a pointer
to avariable of thistype declared somewhere in his or her program.

The pvalue argument is a pointer to a variable of the decode function type (either operation input or output) to receive
the decoded input/output data. The pfault argument is a pointer to a variable of the operation fault type to receive the
decoded SOAP Fault data.

89

Generated C Encode/Decode Functions

The WSDL output operation decode function is used to decode a response from a Web Service server. If the response
isa SOAP Fault message, the returned value statusis RTERR_SOAPFAULT, and the decoded dataiis saved in pfault
. If the response is a normal SOAP message, the returned status value is zero and the decoded datais saved in pvalue
. A negative return value indicates decoding failed. Return status values are defined in the rtxErrCodes.h includefile.
The error text and a stack trace can be displayed using the rtxErrPrint function.

SAX Based Decode Functions

If -sax is specified on the XBinder command-line or selected in the GUI, SAX-based decode functions are generated.
The code generated in this case uses off-the-shelf XML parser software to parse the XML documents to be decoded.
This software contains a common interface known as the Smple API for XML (or SAX) that is a de-facto standard
that is supported by many parsers. XBinder generates an implementation of the content handler interface defined by
this standard. This implementation receives the parsed XML data and uses it to populate the structures generated by
the compiler.

Thedefault XML parser used isthe GNOME LibXML 2 parser (http://xmlsoft.org). Thisisafullfeatured, open-source
parser that wasimplemented in C. XBinder generates C SAX handler functionsthat are called from the SAX interface of
thisframework to decode XML datainto the generated typed data structures. The interface was designed to be generic
so that other XML parsers could be easily substituted. An interface to the EXPAT parser (http://www.expat.org) is
also available as well as an interface to a custom micro-parser for memory constrained applications. Interfacing to
other parsers requires only building an abstraction layer to map the common interface to the vendor's interface. See
the SAX Parser Interface section below for more details.

XBinder generates code to implement the following functions defined in the SAX content handler interface:

start El enent
characters
endEl enment

The interface defines other methods that can be implemented as well, but these are sufficient to decode XML encoded
data

Generated C Function Format and Calling Parameters

Generated decode functions are written to a .c file with aname of the following format:

<xsdFi | eNane>Dec. c
where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for
file x.xsd, decode functions for each global element defined in the specification will be written to xDec.c . In addition,
the SAX handler functions that are invoked by the underlying XML parser software are written to a file with a name
of the following format:

<xsdFi | eName>SAX. ¢

The format of the name of each generated C XML decode function is as follows:

[<ns>] Xm D_<el enNane

90

Generated C Encode/Decode Functions

where <el enmNane>isthe name of the XSD global element for which the function is being generated and <ns>isan
optional namespace setting that can be used to disambiguate element names from multiple sources (note: this should
not be confused with XML namespaces which are different).

The calling sequence for each decode function (except WSDL output operation deocde function) is as follows:

status = <decodeFunc> (OSCTXT* pctxt, <typeNane>*
pval ue) ;

In this definition, <decodeFunc> is the name of the decode function described above and <typeName> is the name of
the generated C type definition for the global element.

The pct xt argument is used to hold a context pointer to keep track of decode parameters. This is a basic "handle"
variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded application.
The user is required to supply a pointer to a variable of this type declared somewhere in his or her program. The
variable must beinitialized using the rtXmlInitContext run-time function before use.

The pval ueargument is a pointer to a variable to hold the decoded result. This variable is of the type generated for
the XSD type of the global element. The decode function will automatically allocate dynamic memory for variable
length fields within the structure. This memory istracked within the context structure and is released when the context
structure is freed.

Thefunction result variable st at usreturnsthe status of the decode operation. Status code zero indicates the function
was successful. A negative value indicates decoding failed. Return status values are defined in the "rtxErrCodes.h"
include file. The reason text and a stack trace can be displayed using the rtxErrPrint function.

The calling sequence for aWSDL output operation decode function is as follows:

status = <decodeFunc> (OSCTXT* pctxt, <nane>* pval ue,
<fault name>* pfault);

In this definition, <decodeFunc> denotes the decode function name defined above. The pct xt argument is used to
hold a context pointer to keep track of decode parameters. Thisis a basic "handle" variable that is used to make the
function reentrant so it can be used in an asynchronous or threaded application. The user isrequired to supply a pointer
to avariable of thistype declared somewhere in his or her program.

The pvalue argument is a pointer to a variable of the decode function type (operation output) to receive the decoded
output data.

A negative return value indicates decoding failed. Return status values are defined in the rtxErrCodes.h include file.
The error text and a stack trace can be displayed using the rtxErrPrint function.

The WSDL output operation decode function is used to decode a response from a Web Service server. If the response
isan SOAP Fault message, thereturned statusvalueisRTERR_SOAPFAULT, and the decoded datais saved in pfault.
The pfault argument is a pointer to a variable of the operation fault type to receive the decoded SOAP Fault data.

If the response is a normal SOAP message without Fault, the returned status value is zero and the decoded data is
saved in pvalue.

SAX Parser Interface

Third-party SAX parsersare configured to work with X Binder through interface source files. Pre-built interface source
filesfor Expat, LibXML2, and amicro-SAX parser that was devel oped in-house are available in the XBinder distrib-
ution package. The source files for these respective parsers are as follows:

91

Generated C Encode/Decode Functions

rt Xm Expatl F.c
rt Xm Li bxml 21 F. ¢
rt XmMcrolF.c

These filesimplement the following functions which are required to interface a third-party SAX parser with XBinder:

rtSaxCStartElementHandler - thisisthe start element adapter function. It receivesa SAX start element callback using
the parser's native arguments and converts the arguments into the XBinder common format and then invokes the
XBinder startElement callback.

rtSaxCEndElementHandler - thisisthe endelement adapter function. It receivesa SAX end element callback using the
parser's native arguments and converts the arguments into the X Binder common format and then invokes the X Binder
endElement callback.

rtSaxCCharacter DataHandler - thisis the characters adapter function. It receivesa SAX characters callback using the
parser's native arguments and converts the arguments into the X Binder common format and then invokes the X Binder
characters callback.

rtSaxCParse - this is a wrapper function for the third-party SAX handler's parse function. This can be as simple as
directly calling the function itself. In the XBinder built-in case, the functions are more complicated because they
support reading a stream of multiple documents.

In the case of the micro parser, the full implementation is contained within the rtXmlMicrolF.c file. This parser is
designed for applications that require asmall footprint to operate. It isabare-boned XML parser that does not support
many of the well-formedness and validity checks of the other parsers. If documentsto be parsed are known to be good,
this can be aviable alternative to make an application smaller.

The parameters required to compile against and link with a given parser implementation can be found in the
xmlparser.mk filein the C subdirectory of theinstallation. Filesfor various operating system, parser type combinations
are identified by specia extensions on the files (for example, xmiparser.gnu_expat is the interface file for Expat on
GNU systems such as Linux). All that generally needs to be done to interface with a specific parser is to rename the
file to xmlparser.mk .

DOM Interface

Decoders can be generated that can decode from a W3C Document Object Model (DOM) structure into XBinder
generated structures. Thisis accomplished by adding the -dom switch to the command-line instead of -sax and -xml .
The generated global element decode functions in this case would be of the following format:

[ns] Xm Dec_<el enNane>_fronDOM (OSCTXT* pct xt,
OSRTDOVDocPtr doc, <typeName>* pval ue);
The pctxt argument is the standard context argument as defined in other function definitions. The doc argument isthe
pointer to the main document root node of a DOM structure. Thisis abstract and is defined in domAPI.h to be avoid

pointer. It is assumed that the user has a DOM implementation defined that contains a concrete representation of this
type. The pvalue argument is a pointer to a structure of the generated element type to receive the decoded data.

Procedure for Calling C Decode Functions

There are four stepsto calling a compiler-generated C XML decode function:

1. Prepare a context variable for decoding;

92

Generated C Encode/Decode Functions

2. Open astream;
3. Call the appropriate compiler-generated decode function to decode the message;
4. Freethe context after use of the decoded data is complete to free allocated memory structures

Before a C XML decode function can be called; the user must initialize a context variable. Thisis a variable of type
OSCTXT. Thisvariable holds all of the working data used during the decoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtXmlInitContext function:

OSCTXT ct xt; // context variable

if (rtXmlInitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem*/
printf ("context initialization failed (check license)\n");
return -1;

}

The next step is to create a stream object within the context. This object is an abstraction of the input device from
which the XML datawill be read and parsed. Calling one of the following functions initializes the stream:

e rtxStreamFileOpen

* rixStreamFileAttach

* rtxStreamSocketAttach
e rtxSreamMemoryCreate
* rtxStreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created.

A decode function can then be called to decode the message. If the return status indicates success (0), then the message
will have been decoded into the given XSD type variable. The decode function may automatically allocate dynamic
memory to hold variable length items during the course of decoding. This memory will be tracked in the context
structure, so the programmer does not need to worry about freeing it. It will be released when the context is freed.

The final step of the procedure is to close the stream and free the context block. The function to close the stream is
rixStreamClose . The function to free the context is rtxFreeContext .

A program fragment that could be used to decode an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by XBi nder */
main ()
{

int stat;

OSCTXT ct xt;

Per sonnel Record enpl oyee;

const char* filename = "nmessage. xm";

93

Generated C Encode/Decode Functions

/[* Step 1: Init context structure */

if (rtXmlInitContext (&ctxt) !'= 0) return -1;
I nit_Personnel Record (&ctxt, &enployee);

[* Step 2: Open a stream */

stat = rtxStreanFil eQpen (&ctxt, filename, OSRTSTRMF_I NPUT);
if (stat '=0) {

rtxErrPrint (&ctxt);

return -1,

}

/* Step 3: decode the record */

stat = Xm D_personnel Record (&ctxt, &enpl oyee);
if (stat == 0) {
if (trace) {
printf ("Decode of Personnel Record was successful\n");
printf ("Decoded record:\n");
Print _Personnel Record ("Enpl oyee", &enpl oyee);

}
}
el se {
printf ("decode of Personnel Record failed\n");
rtxErrPrint (&ctxt);
rtxStreantl ose (&ctxt);
return -1,
}

/[* Step 4: Close the streamand free the context. */

rtxStreantl ose (&ctxt);
rt xFreeCont ext (&ctxt);

return O;

}

When calling a C XML decode function for WSDL operation output, the user must initialize afault variable. Thisis
avariable of type Oper_Fault, where Oper is the operation name.

The following code snippet could be used to decode an Add operation output for example CalcWSDL:

Add _Fault fault;

stat = Init_Add_Fault (&ctxt, &fault);

if (0!=stat) {
printf ("fault initialization failed\n");
return stat;

}

/* Decode */

94

Generated C Encode/Decode Functions

stat = Xml D_Add_CQut put (&ctxt, & esponse, &fault);

if (stat == 0) {
printf ("Decode of response nessage was successful\n");
Print _Add_CQut put ("response", &response);

}
else if (stat == RTERR_SOQAPFAULT) {
printf ("Decode of fault nessage was successful\n");
Print _Add_Fault("fault", &fault);
}
el se {
printf ("decode failed\n");
rtxErrPrint (&ctxt);
return stat;
}

Generated Validation Functions

The -valid or -genvalid option causes validation functions to be generated. These functions can be used to validate a
given XML instance against the compiled schematype. They are similar to decode functions in that either the pull-
parser or generated SAX handlers are used to parse an XML instance. The handlers in this case do not fully decode
the instance; instead, they just check that the instance satisifies all of the constraints specified in the schema.

The generated validation functions are written to a..c file with a name of the following format:

<xsdFi | eName>Vl dt . ¢

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd and -valid is specified, validation functions will be written to xVIdt.c . If thefile being processed isaWSDL file,
the suffix would be WSDLVIdt.c (for example, x.wsdl would produce XWSDLVIdt.c).

The format of the name of each generated validation functionis as follows:

[<ns>] Xm V_<el enNane>

where <el emNane>is the name of the XSD global element for which the function is being generated and <ns>is
an optional nhamespace setting that can be used to disambiguate names from multiple sources (note: this should not
be confused with XML namespaces which are different). Note that validation functions are only generated for global
elements, not types.

When the -genFactory option is also specified, factory validation function is generated. The format of the generated
factory validation function is as follows;

[<ns>] XM V_Proj ect _<prj Nane>

where <pr j Nane>isthe name of the project for which the function is being generated and <ns>is an optional name-
space setting.

The calling sequence for each generated test function is as follows:

OSBOCL result = <validationFunc> (OSCTXT* pctxt);

95

Generated C Encode/Decode Functions

In this definition, <validationFunc> denotes the formatted function name defined above.

Thepct xt argument isused to hold acontext pointer to keep track of dynamic memory allocation parameters. Thisisa
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user isrequired to supply apointer to avariable of thistype declared somewherein hisor her program.
The variable must beinitialized using either the rtxInitContext or rtXmllnitContext run-time function before use.

The result function return code is a boolean variable indicating whether the message is valid or not. If the message
is not valid, reasons for failure will be stored on the error list within the context. The rtxErr functions can be used to
examine this list (see the XBinder C/C++ Run-time Reference Manual for details). The simplest way to access this
information isto call rtxErrPrint which will print details on all errorsto stderr.

Procedure for Calling C Validation Functions

There are three steps to calling a compiler-generated C XML validation function:

1. Prepare a context variable for decoding/validation;

2. Open astream,

3. Call the appropriate compiler-generated validation function to validate the message;

Beforea C XML validation function can be called; the user must initialize a context variable. Thisisavariable of type
OSCTXT. Thisvariable holds all of the working data used during the decoding of a message. The context variable is
declared as a normal automatic variable within the top-level calling function. It must beinitialized before use. This
can be accomplished by using the rtXmllnitContext function:

OSCTXT ct xt; /] context variable

if (rtXmlnitContext (&ctxt) !'= 0) {
/* initialization failed, could be a Iicense problem */
printf ("context initialization failed (check license)\n");
return -1,

}

The next step is to create a stream object within the context. This object is an abstraction of the input device from
which the XML datawill be read and parsed. Calling one of the following functions initializes the stream:

* rtxSreamFileOpen

* rtxStreamFileAttach

* rtxStreamSocketAttach
e rtixSreamMemoryCreate
* rtxSreamMemoryAttach

The flags parameter of these functions should be set to the OSRTSTRMF_INPUT constant value to indicate an input
stream is being created.

A validation function can then be called to validate the message. If the boolean return code is true, then the message
isvalid; otherwise, one or more validation errors occurred. The validation errors are stored in the error list within the
context. The rtxErr run-time functions can be used to process the error list. The simplest way to get validation error
information isto call rtxErrPrint which will print information on all of the errors to stderr.

96

Generated C Encode/Decode Functions

The final step of the procedure is to close the stream and free the context block. The function to close the stream is
rixStreamClose . The function to free the context is rtxFreeContext .

A program fragment that could be used to validate an employee record is as follows:

#i ncl ude enpl oyee. h /* include file generated by XBinder */
main ()
{ .

int stat;

OSCTXT ct xt;

OSBOOL val i d;

const char* filename = "message. xm ";

/* Step 1: Init context structure */
if (rtXmlInitContext (&ctxt) !'= 0) return -1;
/* Step 2: Open a stream */

stat = rtxStreanFil eQpen (&ctxt, filename, OSRTSTRMF_I NPUT);
if (stat '=0) {

rtxeErrPrint (&ctxt);

return -1,

}

/* Step 3: validate the record */

valid = Xm V_personnel Record (&ctxt);
if (valid) {
if (trace) {
printf ("Personnel Record is valid\n");

}

el se {
printf ("Personnel Record is not valid\n");
rtxeErrPrint (&ctxt);
rtxStreant ose (&ctxt);
return -1,

}

/* Close the streamand free the context. */

rtxStreant ose (&ctxt);
rt xFreeCont ext (&ctxt);

return O;

}
Generated Print Functions

The -print option causes print functions to be generated. These functions can be used to print the contents of variables
of generated types.

97

Generated C Encode/Decode Functions

The generated print functions are written to a .c file with a name of the following format:

<xsdFi | eName>Print.c

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd and -print is specified, print functions will be written to xPrint.c . If the file being processed isaWSDL file, the
suffix would be WSDLPrint.c (for example, x.wsdl would produce XWSDLPrint.c).

The format of the name of each generated print function is as follows:

[<ns>] Pri nt _<t ypeNane>

where <t ypeNamne>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different). Note that print routines are generated for each type within a specification
making it possible to print the contents of any typed variable (some generated functions are only generated for global
elements).

The calling sequence for each generated print function is as follows:

<printFunc> (const char* nanme, <typeNane>* pval ue)
In this definition, <printFunc> denotes the formatted function name defined above.

The name argument is used to hold the top-level name of the variable being printed. It is typically set to the same
name as the pvalue argument in quotes (for example, to print an employee record, a call to 'Print_Personnel Record
("employee", & employee) might be used).

The pvalue argument is used to pass a pointer to a variable of the item to be printed.

The code snippet in the section entitled Procedure for Calling C Decode Functions contains an example of calling a
generated print function. If asuccessful statusisreturned from calling the decode function, the contents of the decoded
variable are printed:

stat = Xm D_personnel Record (&ctxt, &enpl oyee);
if (stat == 0) {
if (trace) {
printf ("Decode of Personnel Record was successful\n");
printf ("Decoded record:\n");

Print _Personnel Record ("enpl oyee",
&enpl oyee) ;

}
Generated Test Functions

The -genTest option causes test functions to be generated. These functions can be used to populate variables of gen-
erated types with random test data or data from an existing XML instance. They have two main purposes.

1. To allow testing of the application code with awide-variety of test data, and

98

Generated C Encode/Decode Functions

2. To provide a code template for users to use to write code to populate variables

The second item is quite useful to users because generated data types can become very complex as the schemasbecome
more complex. It is sometimes difficult to figure out how to navigate all of the lists and pointers. Using -genTest can
provide code that may be modified to accomplish the population of a data variable with any type of data.

The generated test functions are written to a .c file with a name of the following format:

<xsdFi | eNanme>Test . c

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd and -test is specified, test functions will be written to xTest.c . If the file being processed is a WSDL file, the
suffix would be WSDLTest.c (for example, x.wsdl would produce X\WSDLTest.c).

The format of the name of each generated test function is as follows:

[<ns>] Test _<el enNane>

where <el emNane>is the name of the XSD global element for which the function is being generated and <ns>is
an optional namespace setting that can be used to disambiguate names from multiple sources (note: this should not be
confused with XML namespaces which are different). Note that test routines are generated only for global elements
within a specification.

The calling sequence for each generated test function is as follows:

<typeNane>* pval ue = <testFunc> (OSCTXT* pctxt)
In this definition, <testFunc> denotes the formatted function name defined above.

Thepct xt argument isused to hold acontext pointer to keep track of dynamic memory allocation parameters. Thisisa
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user isrequired to supply apointer to avariable of thistype declared somewherein hisor her program.
The variable must beinitialized using either the rtxInitContext or rtXmllnitContext run-time function before use.

The pval ueargument is a pointer to hold the populated data variable. This variable is of the type generated for the
XSD type of the global element. The test function will automatically allocate dynamic memory using the run-time
memory management for the main variable as well as variable length fields within the structure. This memory is
tracked within the context structure and is released when the context structure is freed.

Generated ldentity Constraint Test Functions

When option -genKeyTest is specified, XBinder generates xsd:key related identity constraint test functions for global
elements. These functions are used to validate the structure of datato ensureit is compliant with xsd:key, xsd:keyref,
and xsd:unique constraints defined within the schema. These functions may be called prior to encoding a document
or after decoding to validate constraint compliance. Calls to these functions are also added to generated reader/writer/
rwtest code if this option is specified.

The generated key test functions are written to a .c file with a name of the following format:

<xsdFi | eName>KeyTest . c

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd and -genKeyTest is specified, test functions will be written to xKeyTest.c .

99

Generated C Encode/Decode Functions

The format of the name of each generated key test function is asfollows:

[<ns>] Xm KeyTest <el emNane>

where <el emNane>is the name of the XSD global element for which the function is being generated and <ns>is
an optional namespace setting that can be used to disambiguate names from multiple sources (note: this should not
be confused with XML namespaces which are different). Note that key test routines are generated only for global
elements within a specification.

The calling sequence for each generated test function is as follows:

int stat = <keyTest Func> (OSCTXT* pctxt, <typeNanme>*
pval ue)

In this definition, <keyTestFunc> denotes the formatted function name defined above.

Thepct xt argument isused to hold acontext pointer to keep track of dynamic memory allocation parameters. Thisisa
basic "handle" variable that is used to make the function reentrant so that it can be used in an asynchronous or threaded
application. The user isrequired to supply apointer to avariable of thistype declared somewherein hisor her program.
The variable must beinitialized using either the rtxinitContext or rtXmllnitContext run-time function before use.

Thepval ueargument is a pointer to a populated global element data structure. Thisvariableis of the type generated
for the XSD global element. The key test function checks identity constraints on the data within the structure. In
encoding, it should be called after the structure is populated, and before the calling of encode function; in decoding,
it should be called after decode function.

Note: if a data structure is filled with randomly-generated test data (with the -genTest option), it will most likely fail
validation. Thisis because the identity constraints are not taken into consideration when generating test data.

The key test function returns 0 status if validation is successful. The following error codes will be returned when
validation fails:

XML_E _KEYNOTFQU - mat ching keyref constraints not present in array

XML_E DUPLKEY - key or unique constraint has duplicate key

XML_E FLDABSENT - inconplete key fromkey constraint, some field is
absent

XML_E DUPLFLD - key has duplicate field

Note: the identity constraint test functions are currently generated for C only.

Generated Reader and Writer Programs

Another capability that is related to -genTest is the capability to generate sample reader and writer programs. These
can act as guides or templates in devel oping more advanced applications.

The -genReader option causes a reader program (reader.c) to be generated. This program will read data from afile
containing an XML document and decode the document into a corresponding data structure. The data structure to be
used will either be chosen randomly from the provided schemafile, or the -usepdu option may be used to select the
global element to be used.

The -genWkiter option causes awriter program (writer.c) to be generated. The global element to be used as the basis
for this program can be selected using -usepud option as was done for the reader above. If -genTest was specified
at the same time as -genWriter, a section will be added to the writer to populate a data structure with test data for

100

Generated C Encode/Decode Functions

encoding. If -genTest was not specified, a"TODQO" section is added to the writer to allow the user to add their own
code to populate a variable of the type to be encoded.

The -genRWTest option causes aread/write program to be generated. Thisreadsin adocument of agiven XML schema
type (as above, this may be specified using -usepdu), decodes it, and then reencodes iand writes the document back
out. This can be useful for doing transformations on a document such as automatically changing the values of certain
fields. It isaso useful for round-trip testing.

The -zip options can be used in conjunction with -genReader and -genWriter switches to produce programs that will
read and write documents in compressed form. Also, -c14n can be used to produce a writer program that will output
an XML document in canonical form.

Generated WSDL SOAP Stub Functions

When -genStubs option is specified, SOAP Stub functions are generated. Those functions send a request to a server,
wait for aresponse and decode it. Those functions are written to a .h and a .c files. The format of the names of those
filesare asfollows:

<wsdl Fi | eName>W5DLSoapd i ent St ubs. h
<wsdl Fi | eName>W5DLSoapd i ent St ubs. ¢

The format of a generated SOAP Stub function nameis as follows:

Xm Soap_[<ns>] <wsdl operation nanme>

where<wsdl operati on name>isthe name of the WSDL Operation for which the function is being generated
and <ns>is an optional namespace setting that can be used to disambiguate names from multiple sources (note: this
should not be confused with XML namespaces which are different).

The calling sequence for each generated SOAP Stub function is as follows:

Xm Soap_[<ns>] <wsdl operation nane> (OSSOAPCONN* pConn,
<wsdl input operation type>* preq, OSCCTET**
presp);

The pConnargument is a pointer to a SOAP connection structure. The pr eqargument is a pointer to avariable of the
wsdl input operation type. The preg contains the information to be sent to the server. The presp argument is a pointer
to a variable which holds the response message returned from the server.

Generated WSDL SOAP Skeleton Server and
Client Programs

A capability that isrelated to -genTest is the capability to generate skeleton server and sample client programs. These
can act as guides or templates in devel oping more advanced web service server and client programs.

The -genSkel option causes a skeleton server program (server.c) to be generated. This option must be used with option
-genTest. The skeleton server receives a request message, populates response message with test data, and sends the
response message back to the client. A stub (empty) function is generated for each WSDL operation. These functions
should be supplied by the Web Service devel opers. In the generated server code, some comments are put in place for
calling of the these functions.

101

Generated C Encode/Decode Functions

The - gend i ent option causes a sample client program (client.c) to be generated. This option must be used with
option -genTest. The sample client program popul ates arequest messasge with test data, sends to the server, and waits
to receive the response message.

Generated SSL Stub Functions

When -genSSL Stubs option is specified, secure HTTP stub functions are generated. Those functions are using
OpenSSL. They send arequest to a server over SSL, wait for aresponse. Those functions are writtentoa.hand a.c
files. The format of the names of those files are as follows:

<wsdl Fi | eName>WEDLSSLC i ent St ubs. h
<wsdl Fi | eName>WBDLSSLC i ent St ubs. ¢

The format of agenerated SSL Stub function nameis as follows:

Xm SSL_[<ns>] <wsdl operation name>

where <wsdl operati on name>isthe name of the WSDL Operation for which the function is being generated
and <ns>is an optional namespace setting that can be used to disambiguate names from multiple sources (note: this
should not be confused with XML namespaces which are different).

The calling sequence for each generated SOAP Stub function is as follows:

Xm SSL_[<ns>] <wsdl operation name> (OSCTXT* pctxt,
[<ns>] <wsdl input operation type>* pQOperln,
OSOCTET** pResponseMsg, char* http_hdr);

The pct xt argument is a pointer to a context structure which contains a pointer to an SSL structure. The pQper I n
argument is a pointer to a variable of the wsdl input operation type. The pOperin contains the information to be sent
to the server. The pResponseM sg argument is a pointer to a variable which holds the response message returned from
the server.

Generated SSL Client Programs

The -genSSL_Client option causes a SSL client program (ssIClient.c) to be generated. This option must be used with
option -genTest. Note: this assumes OpenSSL isin place on the target platform. The sample client program opens a
TCP connection to port 443 on server. The server hostname is provided by option -hostname of the client program,
and the port number can be changed using -port option of the client. The client then initiates the SSL handshake over
the TCP connection; and sends HT TP request over SSL. The sample client program can act as guides or templatesin
developing more advanced SSL client program.

Other Generated Functions

In addition to the functions described above, the following other types of functions are generated as part of the code
generation process:

« Initiaization functions
* Memory free functions

« Utility functions based on data type

102

Generated C Encode/Decode Functions

All of these common functions are applicable to both encode and decode operations and, as such, are written to the
common base .c file. The format of the name of thisfileis asfollows:

<xsdFi | eNane>. c

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd and -test is specified, then the common functions will be written to x.c .

Initialization Functions

Initialization functions are for initializing avariable of a generated data type before use. Thisincludes setting all fields
that contain default or fixed values to the value specified in the schema. All other fields are set to zero. The format
of an initialization function nameis as follows:

[<ns>] I nit_<typeNanme>

where <t ypeNane>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different).

The calling sequence for each generated initialization function is as follows:

<initFunc> (OSCTXT* pctxt, <typeNane>* pval ue)
In this definition, <initFunc> denotes the formatted function name defined above.

The pct xt argument is used to hold a context pointer to keep track of global parameters. The pval ueargument is
apointer to avariable of the type to beinitialized.

Memory Free Functions

Memory free functions allow memory associated with a specific typed variable instance to be freed. Their use is not
required to free memory - the run-time function rtxMemFree can be called directly with a context variable to free all
memory associated with a context. There are applications, however, where freeing the memory contents of a specific
variable are desirable.

Memory free functions are not generated for all types - only those that contain fields that use dynamic memory. This
includes types that contain elements or attributes that reference other types that use dynamic memory. The format of
a generated memory free function is asfollows:

[<ns>] Free_<t ypeNane>

where <t ypeNane>is the name of the XSD type for which the function is being generated and <ns>is an optional
namespace setting that can be used to disambiguate names from multiple sources (note: this should not be confused
with XML namespaces which are different).

The calling sequence for each generated memory free function is as follows:

<freeFunc> (OSCTXT* pctxt, <typeNane>* pval ue)

In this definition, <freeFunc> denotes the formatted function name defined above.

103

Generated C Encode/Decode Functions

The pct xt argument is used to hold a context pointer to keep track of global parameters. The pval ueargument isa
pointer to avariable of the type containing the memory to be freed.

Helper Functions

Other utility or "helper" functions are type specific and designed to help the user work with the generated code. The
following utility function are generated for the following types:

» Enumerated: <typeName>_ toString and <typeName>_toEnum functions are generated to allow conversion from
enumerated to string and vice-versa.

» Listorarray: repeating fieldsthat result in the generation of an OSRTDL.ist variable contain a <typeName>_Append
function. Thisis used to append an instance of atyped variable to the list variable.

Generated Makefile

The -genmake option causes a makefile to be generated to assist in the C or C++ compilation of al of the generated
source files. This makefile contains arule to invoke XBinder to regenerate the .c and .h files if the XSD source file
changes. It also contains rules to compile al of the C or C++ source files. Header file dependencies are generated
for all the source files.

Two basic types of makefiles are generated:

1. A GNU compatible makefile. Thismakefileis compatiblewith the GNU make utility whichissuitablefor compiling
code on Linux and many UNIX operating systems, and

2. A Microsoft Visua Studio compatible makefile. This makefile is compatible with the Microsoft Visual Studio
nmake utility.

A GNU compatible makefileisproduced by default, the Microsoft compatiblefileisproduced when the -w32 command
line option is specified in addition to -genmake .

Both of these makefile types rely on definitions in the platform.mk make include file. This file contains parameters
specific to different compiler and linker utilities available on different platforms. Typically, al the needs to be done
to port to a different platform isto adjust the parametersin thisfile.

Related to -genmake are the -genMakeLib and - genMakeDLL command-line options. -genmake causes a makefile to
be generated that will contain statements to compile the generated code into object files. -genMakeLib adds additional
statementsto store the object filesin astatic library file. -genMakeDLL adds additional statementsto link the resulting
objectsinto aWindows DLL or UNIX shared object file.

When -use-qt is used, the generated makefile will link in Qt libraries. As of this writing, the library names that are
used correspond to Qt 5. If you are using a different version of Qt, you will likely need to adjust the library names
in the makefile.

104

Chapter 8. Generated C++ Class Methods

XBinder generates C++ classes for all types and globa elements defined in an XML schema. Each class generated
for agloba element contains the main encode or decode methods required to seriaize data to and from XML class
member variables. Methods generated for types are used by the global element methods to accomplish the complete
encoding or decoding of an XML document for the given element. Methods are also generated to help users construct
and populate the generated type classes.

The following sections describe procedures for using the XBinder generated C++ framework to encode and decode
XML data.

Preparing C++ Objects for Encoding

Before data can be encoded, an instance of the C++ class for a given data type must be populated. In most cases,
this involves the ssimple assignment of data items to the elements within the structure and is very similar to the C
case presented earlier. In some cases, however, dynamic memory pointers are involved. It is necessary to know how
dynamic memory works in the run-time in order to populate these fields.

Dynamic Memory Management

In the case of C++, dynamic memory management is handled by the new and del ete operators. In most cases, handling
memory involves the common action of making sure to delete any pointer that was allocated with new when done
with it. The C++ memory management policy for XBinder v1.2 and above is to deep-copy al non-atomic variables
on assignment. This differs from earlier versions where an ownMemory flag was used to assign ownership. Now, all
XBinder classes hold their own copy of objects which are automatically deleted on desctruction.

One exception to thisrule is for a control class. A flag and a utility method in the control class are used to assign
ownership. When an XML instance is decoded, if a reference to a variable to receive the decoded data has not been
provided, memory will be allocated internally within the class to hold the data. This memory will be freed when the
control class object is deleted or goes out of scope. The exception to thisruleisif the user uses the non-const version
of the getVaue method to get a pointer to the value. In this case, ownership of the memory is transferred to the user
who is then responsible for freeing it using the delete operator.

An example of a control class is shown below (thisis taken from the cpp/sample/Employee sample program):

cl ass EXTERN personnel Record_CC : public OSXSDd obal El ement {
pr ot ect ed:
. Personnel Record * npVal ue;
OSBOOL nbOamnMenory;

publi c:
i nline ::Personnel Record* get Val ue()

{ set OwmnMenory (FALSE); return npVal ue; }
inline const ::Personnel Record* getValue() const { return nmpVal ue; }

[*x

* This method transfers ownership of the string nenmory to the

* class instance. The nmenmory will be del eted when the instance
* |s deleted or goes out of scope.

*

*

@ar am bval ue - Bool ean val ue.

105

Generated C++ Class Methods

*/
inline void set OmMenory (OSBOCOL bval ue=TRUE) { nmbOanMenory=bval ue; }

b
i nt personnel Record_CC: : decodeFr om (OSRTMessageBuf f er | F& nsgbuf)
{

if (0 == nmpVal ue) {
npVal ue = new :: Personnel Record;

if (mpVal ue == NULL)
return LOG RTERR (pctxt, RTERR _NOVEM ;

set OanMenory();

}

An code segment from areader program that calls non-const version of thegetVValue method is shown below:

if (0 == stat) {
pVal ue = pdu. get Val ue();

}
del et e pVal ue;

Theother exceptionto thisruleisthelinked-list class append method. In caseswhere an object listisused, itisassumed
that the user has allocated the object using new and is turning over management of the memory to the list class. This
means that when the list is destroyed, all objects inside are destroyed aswell. A second method called appendCopy is
availablein generated linked-list based classesthat allows acopy of the given object to be made and assigned to the list.

An example of a class with a built-in list and the methods that are generated is shown below (this is taken from the
cpp/sample/simpleArray sample program):

class SinpleArray : public OSRTBaseType {
publi c:
/1 List of OSXM.Stringd ass
class itemlist : public OSRTObjListd ass {
publi c:
voi d append (OSXM.StringC ass* pdata) {
OSRTDLi st d ass: : append ((const voi d*)pdata);
}
voi d appendCopy (const OSXM.StringCl ass* pdata) {
OSRTDLi st O ass: : appendCopy ((voi d*) pdat a);
}

const OSXMLStringCd ass* getltem (int idx) {
return (const OSXM.StringCd ass*)
OSRTDLi st d ass: :getltem (idx);

} item

106

Generated C++ Class Methods

Inthiscase, theitem list isalist of strings. The append method directly assigned the given pointer variable to the list.
The appendCopy method first makes a copy of the item and then assigned it to the list. When the list is deleted, all
of the objectsin the list are deleted as well.

When an XML instance is decoded, the decoder automatically transfers memory ownership to the container objects.
It is therefore not necessary for the user to worry about freeing memory for any of the items within a returned class
instance. Deleting the main object is all that is necessary to free the memory of all of the items within.

Populating Generated Class Instances for Encoding

Prior to calling a compiler generated encode function, an instance of the class generated by the compiler must be
populated. All member variables within the generated classes are declared to be public, it is therefore possible to do
direct assignments to populate the variables. Sometimes the variables are more complicated, however, and special
assignment methods are generated to assist the usein popul ating the variables. These special cases are described bel ow.

Atomic Simple Types

Atomic simple types include boolean, integer, double, decimal, and types derived from these base types. The classes
generated for these types include a value member that can be assigned to directly. They also include a parameterized
constructor that allows assignment through construction and an assignment operator that makes it possible to do as-
signment directly through the ‘=" sign without having to use the value member. This makes assignment compatible
with the C case.

For example, the following simple integer type declaration:

<xsd: si npl eType name="Enpl oyeeNumber " >
<xsd:restriction base="xsd:integer"/>
</ xsd: si npl eType>

causes a class with the following constructors and assignment operator to be generated:

cl ass Enpl oyeeNunber : public OSRTBaseType {
publ i c:
OSI NT32 val ue;
Enpl oyeeNunber () ;
Enpl oyeeNunber (OSI NT32 val ue);
Enpl oyeeNumnber & oper at or = (OSI NT32 val ue);

This makes it possible to assign an employee number in any of the following ways:
Enpl oyeeNunber enpno (33);
or

Enpl oyeeNunber enpno;
enpno. val ue = 33;

or

Enpl oyeeNunber enpno;
enpno = 33;

Character String Types

Character string types are derived from the built-in base class OSXMLSringClass. This classisin turn derived from
the OSXMLSTRING C struct type which contains a value member character pointer variable.

107

Generated C++ Class Methods

An example of the constructors and assignment operators generated for a character string type is shown for the fol-
lowing definition;

<xsd: si npl eType nane="Date" >
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>

The C++ constructors and assignment operators generated for this definition are as follows:

cl ass EXTERN Date : public OSXM.Stringd ass {
public:
Date ();
Date (const OSUTF8CHAR* val ue);
Date (const char* val ue);
Dat e& operator= (const OSUTF8CHAR* val ue);
Dat e& operator= (const char* val ue);

Note that constructors and operators are available that allow strings to be specified as either standard C character
strings or as UTF-8 strings.

Assignment of strings always causes a deep-copy of the character data to be done.

Enumerated Type

Classes generated for enumerated types contain setValue methods! that allow the contained value member variable to
be set. Two overloaded forms of this method are present: one that takes the enumerated identifier and one that takes a
string representation of the value. A method is also generated to allow the value to be retrieved as a number (getValue)
or as astring (toString).

The signatures for these methods is as follows:

normal ’with -noenumvars

i nline Enum get Val ue () const { retjurn val uap PSUI NT16 get Val ue () const { return val
i nt setValue (Enum enunval); int setValue (OSU NT16 enunval);

i nt setValue (const OSUTF8CHAR* strival)jnt setValue (const OSUTF8CHAR* strval);

const OSUTF8CHAR* toString () const|; const OSUTF8CHAR* toString () const;

Binary String Types

Binary string are used to represent XSD hexBinary and base64Binary data types. A dynamic binary string type (i.e.
onethat isnot constrained by alength facet) is derived from the OSDynOctStrClass base class. This classallows value
assignment through constructors and copyValue and setValue methods.

Theconstructorsallow abinary string to be specified using data pointer and number of octetsarguments. The copyValue
method is used to make a copy of the given string and assign it to the class. The setValue method also makes a deep-
copy of the given data string.

Content Group Types

Classes generated for <xsd:sequence> or <xsd:all> complex types contain a series of public element declarations for
each of the elementsin the declaration. These are populated using either direct assignment or the methods availablein
the element type classes. If atomic types are used for elements, the primitive type itself is used in the generated class,

The method si gnatures have changed in version 2.2.2 See the discussion of Enumerated Types for more information.

108

Generated C++ Class Methods

not a class derived from the type. For example, if a sequence contains an element declared to be an <xsd:integer>, the
OSINT32 typeis used for the member variable.

Classes generated for the <xsd:choice> complex type will contain methods to get, set, or query each of the choice
selection elements. The format of these methodsis get <name>, set <name>, or is_<name> where <name> would
be replaced with the actual element name as defined in the schema.

Content model groups that repeat (i.e. have a maxOccurs facet with a value greater than one) cause a class to be gen-
erated that is derived from the OSRTObjListClass base class. This class contains append and appendCopy methods
for adding elements to the list. An example of what these methods look like is given in the * Dynamic Memory Man-
agement’ section above. This method allows memory ownership for the object being added to the list to be tranferred
to thelist object. Note that this can be done on a per-element basis making it possible to mix and match dynamic and
static element declarationsin agiven list.

Message Buffer or Stream Classes

Message buffer or stream classes are used to describe the source from which amessage is being decoded or the target
to which a message is being encoded. The base interface for these classes is OSRTM essageBuffer | F. Classes for
message buffers or streams specific to encoding or decoding and for different encoding rules (for example, XML) are
derived from this base class. An instance of one of these derived classes along with an instance of the class generated
for aparticular XSD type are needed to encode or decode a message.

Message buffers for encoding can be either static or dynamic. A static buffer is simply a byte array in memory. It is
generaly the better performing case because no dynamic memory allocations are required. However, the user must
know in advance the amount of memory that will be required to hold an encoded message. There is no fixed formula
to determine this number. XML encoding involves the additions of tags and attributes and other decorations to the
provided data that will increase the size beyond theinitial size of the populated data structures. The way to find out is
either by trial-and-error (an error will be signaled if the provided buffer is not large enough) or by using avery large
buffer in comparison to the size of the data. A static buffer is described using a message buffer class object by passing
the byte array address and size to the constructor.

A dynamic buffer is specified by using the default constructor. This tells the encoder that it is to allocate memory for
the message. It does this by allocating an initial amount of memory and when thisis used up, it expands the buffer by
reallocating. This can be an expensive operation in terms of performance, especialy if alarge number of reallocations
arerequired. Special methods are provided that allow the initial and incremental allocation sizesto be tuned for better
performance. See the runtime class reference guide for further details on this.

In either case, after amessageisencoded, it is necessary to get the start address and length of the message. In the static
buffer case for XML, the start address of the messageis simply the start address of the buffer. But in the dynamic case,

afunction call is required to get the start address of the message after encoding is complete. The getMsgPtr method
is provided for this purpose.

Generated XML C++ Encode Methods

An XML C++ encode method named encodeXML is added to each class generated for an XSD type when the -xml
switch is specified on the command line. This method will convert a populated instance of the class into an encoded
XML message.

Generated Method Format and Calling Parameters

Generated encode method implementations are written to a.cpp file with a name of the following format:

<xsdFi | eName>Enc. cpp

109

Generated C++ Class Methods

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd, encode method implementations for each type and global element defined in the specification will be written to
XEnc.cpp. If the file being processed is aWSDL file, the suffix would be WSDLENc.cpp (for example, x.wsdl would
produce X\WSDLENc.cpp).

The format of the name of each generated XML encode method is encodeXML. The calling sequenceis as follows:

status = <obj ect >. encodeXM
(OSRTMessageBuf f er | F& nmsgbuf, const OSUTF8CHAR* el enNane,
const OSUTF8CHAR* nsPrefix);

In this definition, <object> denotes an object instance of the generated class.
The msgbuf argument isused to hold areferenceto the message buffer or stream to which the messageis being encoded.

The elemName argument is used to pass an XML element name for the type. This name is what is included in the
<name> </name> brackets used to delimit an XML item. If anull pointer (0) is passed in for this argument, then no
name wrapper is added to encoded XML item.

The nsPrefix argument is used to specify a namespace prefix. If this value is null or empty, no prefix is added to
element name. If aprefix isgiven, aqualified element name of the form nsPrefix: elemName is generated.

Themethod result variable returnsthe status of the encode operation. Status code O (zero) indicates success. A negative
value indicates encoding failed. Return status values are defined in the rixErr Codes.h include file. The error text and
a stack trace can be displayed using the message buffer printErrorInfo method.

Generated C++ Encode Methods for Global Elements

For each global element defined within an XSD specification, acontrol classdefinitionisgenerated. Within this control
class are encode methods that can be used to generate a complete XML document. Thisis the typical entry point an
application program would use to serialize elementsinto XML.

There are two different encode methods that can be used. There is a method named encode that is defined in the
OSXSDGlobal Element base class. This method encodes the data in the class instance into the default message buffer
or stream that was associated with the control classwhen it was created. The second method is encodeTo which allows
amessage buffer or stream to be specified as an argument. The data in the associated class instance is serialized out
to this buffer or stream.

Generated C++ Encode Methods for WSDL Operations

Web service description language (WSDL) documents may contain operation definitionsin portType and binding sec-
tions. Similar to the encode methods generated for global elements, an encode method is generated for each operation
input , output or fault (optional).

Procedure for Using the Generated C++ Encode Method

NOTE: Asof version 1.1, C++ exceptions are no longer used. Therefore, any application programs that used
only try/catch blocksto detect errorswill not work properly. The return status code from the encode method
isthe only mechanism used to report error conditions.

The procedure to encode an XML message using the generated C++ encode method is as follows:
1. Create an instance of the generated type class to hold the data to be encoded.

2. Create an instance of an output stream or message buffer object to which the encoded XML message will bewritten.

110

Generated C++ Class Methods

3. Create an instance of the generated global element control class to link the generated type class instance with the
message buffer or stream instance.

4. Populate the generated type class instance created in step 2 with data to be encoded.
5. Invoke the control class encode method.

6. If encoding was successful (indicated by return status equal to zero), the start-of-message pointer can be obtained
by calling the message buffer getMsgPtr method (note: this assumes encoding using a message buffer was done; if
a stream was used, the message has already been written to the target).

7. If encoding failed, the message buffer or stream printErrorInfo method can beinvoked to print the reason for failure.
A program fragment that uses this procedure to encode an employee record is as follows:

#include "rtxm src/rtXm CppMsgBuf . h"
#i ncl ude "enpl oyee. h"

int min (int argc, char** argv)

{ . .
Int 1, stat;
const char* filename = "nmessage. xm";
OSBOOL trace = TRUE, verbose = FALSE;
const OSOCTET* nsgptr;

/1l Create buffer and control objects

Per sonnel Record val ue;
OSXM_EncodeBuf f er buffer;
per sonnel Record_CC pdu (buffer, value);

if (verbose)
rtxSet Di ag (pdu.getCtxtPtr(), 1);

/1 Popul ate structure of generated type
logic to populate structure here ...

/1 Encode

stat = pdu. encode();

if (0 == stat) {
if (trace) {
megptr = buffer.get MsgPtr();
printf ("encoded XM. nessage:\n");
printf ((const char*)nsgptr);
printf ("\n");

}

el se {
printf ("Encoding failed\n");
buffer.printErrorlnfo();
return stat;

111

Generated C++ Class Methods

/1 Wite the encoded nessage out to the output file

buffer.wite (fil enane);

Generated XML C++ Decode Methods

As of XBinder v1.2, two different types of XML C++ decode methods are generated:
1. Pull-parser based. This uses a custom pull-parser run-time for decoding.

2. SAX based. These provide a standard interface to third party SAX-based XML parsers.

Pull-Parser Based Decode Methods

An XML pull-parser works by allowing auser to“ pull” selected eventsfrom an XML stream asit isparsed. Thisdiffers
from the SAX model which is sometimesreferred to asa“ push” parser because event callbacks are executed (pushed)
asthe stream is parsed. The pull model offers significant advantages for a data binding type application because it is
easier to maintain state between operations. This results in less required code to do the decoding which in turn leads
to improved performance. It is also conceptually easier to understand because the function call model more closely
approximates the model used for encoding.

Generated C++ Method

Format for XSD Types Implementations of C++ pull-parser based decode methods are written to a .cpp file with a
name of the following format:

<xsdFi | eName>Dec. cpp

where <xsdFileName> is the base name of the XSD file being parsed. For example, if code is being generated for
file x.xsd, decode methods for each type and global element defined in the specification will be written to xDec.cpp.
If the file being processed is a WSDL file, the suffix would be WSDLDec.cpp (for example, x.wsdl would produce
XWSDLDec.cpp).

The format of the name of each generated XML decode method is decodeXML. The calling sequenceis asfollows:
stat = <object>. decodeXM. (OSCTXT* pctxt);
In this definition, <object> denotes an object instance of the generated class.

The pctxt argument is the underlying context to the decode message buffer or stream object. It can be obtained by
calling the getCtxtPtr method.

Thefunctionresult variablest at returnsthe status of the decode operation. Status code O (zero) indicatesthe function
was successful. A negative value indicates decoding failed. Return status values are defined in the rtxErrCodes.h
include file. The error text and a stack trace can be displayed using the rtxErrPrint function.

A key difference between SAX-based functions and pull-parser based is that a decode function is not generated for
all typesin the SAX case. That is because of the overhead invlolved in setting up the SAX parser to decode simple
types. Most simple types are decoded inline as part of more complex types. This is an example of a case where the
pull-parser model more closaly follows the encode model.

Generated C++ Method Format for XSD Global Elements

112

Generated C++ Class Methods

The generated C++ decode method for global elementsisthe sasme asfor the SAX case described below. The decode or
decodeFrom that are added to the generated control class are the entry points for decoding complete XML documents
in either the pull-parser or SAX case.

Generated C++ Method Format for Factory Class

The generated C++ decode method for factory classis similar to that for global elements. The decode method is the
entry points for decoding complete XML documents.

Generated C++ Method Format for WSDL Operations

The generated C++ decode method for global elementsisthe sasmeasfor the SAX case described below. The decode or
decodeFrom that are added to the generated control class are the entry points for decoding complete XML documents
in either the pull-parser or SAX case.

SAX Based Decode Methods

If -sax is specified on the XBinder command-line, the code generated to decode XML messages uses off-the-shelf
XML parser software to parse the XML documents to be decoded. This software contains a common interface known
as the Smple API for XML (or SAX) that is a de-facto standard that is supported by most parsers. XBinder generates
an implementation of the content handler interface defined by this standard. This implementation receives the parsed
XML dataand usesit to populate the structures generated by the compiler.

Thedefault XML parser used isthe GNOME LibXML2 parser (http://xmlsoft.org). Thisisafull-featured, open-source
parser that was implemented in C. XBinder generates C++ SAX handler classes within the generated type class for
agiven XML schematype. The methods within these classes are called from the SAX interface of the XML parser
framework to decode XML datainto the generated typed data structures. The interface was designed to be generic so
that other XML parsers could be easily substituted.

In addition to LibXML2, interfaces to the following other C/C++ XML parsers are also available:
1. EXPAT parser (http://www.expat.org)
2. XERCES C++ parser (http://apache.org)
3. A custom micro-SAX parser. Thisis abare-boned XML parser targeted at small footprint applications.
Interfacing to other parsersrequiresbuilding an abstraction layer to map the common interface to the vendor’ sinterface.
XBinder generates code to implement the following SAX content handler methods:

start El ement

characters

endEl enment

The interface defines other methods that can be implemented as well, but these are sufficient to decode XML encoded
data.

Generated C++ Method Format and Calling Parameters

Generated decode and SAX method implementations are written to a.cpp file with a name of the following format:

<xsdFi | eName>Dec. cpp

113

Generated C++ Class Methods

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd, decode functionsfor each global element defined in the specification will bewritten to xDec.cpp. If thefilebeing
processed isaWSDL file, the suffix would be WSDLDec.cpp (for example, x.wsdl would produce XWSDLDec.cpp).

The main method for decoding an XML document that corresponds to an XSD global element is the decode or de-
codeFrom methods. The decode method existsin the OSXSD Gl obal Element base class as decodes a message from the
message buffer or stream associated with the classto the X SD type object instance. A decodeFrom method isgenerated
for each global element that is not referenced by any other types. This method takes as an argument a message buffer
of stream reference. The method reads the XML message from this buffer or stream and decodes it into the XSD type
object instance associated with the control class instance.

Procedure for Calling C++ Decode Methods

NOTE: Asof version 1.1, C++ exceptions are no longer used. Therefore, any application programs that used
only try/catch blocksto detect errorswill not work properly. The return status code from the decode method
isthe only mechanism used to report error conditions.

The procedure to invoke a C++ decode method is as follows:
1. Create an instance of the generated type class into which the XML message data is to be decoded.

2. Create an instance of an input stream or message buffer object from which the XML message to be decoded will
be read.

3. Create an instance of the generated global element control class to link the generated type class instance with the
message buffer or input stream instance.

4. Invoke the control class decode method.

5. If decoding was successful (indicated by return status equal to zero), the decoded data will now be available for
use in the generated type variable. The generated print method can be called at this time to examine the contents
of the data structure.

6. If decoding failed, the message buffer or stream printErrorInfo method can beinvoked to print the reason for failure.
A program fragment that could be used to decode an employee record is as follows:

#i ncl ude "enpl oyee. h"
#include "rtxm src/rtXm CppMsgBuf . h"

int min (int argc, char** argv)
{
int i, stat;
const char* filename = "nmessage. xm";
OSBOOL trace = TRUE, verbose = FALSE;
/1l Step 1: create instance of class into which nessage will be decoded
Per sonnel Record val ue;

/]l Step 2: create an input stream from which the nessage will be read

OSFil el nput Streamin (fil enane);
OSXML.DecodeBuf f er decodeBuffer (in);

114

Generated C++ Class Methods

/1l Step 3: create a control class instance to tie the data object
/1 and input stream object together.

per sonnel Recor d_CC per sonnel Record (decodeBuffer, value);

if (verbose)
rtxSet Di ag (personnel Record.getCtxtPtr(), 1);

/1l Step 4: Decode
stat = personnel Record. decode();
if (0 == stat) {

if (trace) {

printf ("decoded XM. nessage:\n");
per sonnel Record. print ("personnel Record");

printf ("\n");
}
}
el se {
printf ("Decoding failed\n");
decodeBuffer.printErrorlnfo();
}

return stat;

}

The calling procedure on WSDL input operation decode method is the same as that on XSD glabal element deocde
method. When callingaC++ XML decode method for WSDL operation output, the user must initialize afault variable.
Thisisavariable of type Oper_Fault, where Oper is the operation name.

The following code snippet could be used to decode an Add operation output for example CalcWSDL :

Add_Cut put val ue;
Add _Fault fault;

Add_CQut put _CC pdu (decodeBuffer, value, fault);
decodeBuffer.setDi ag (verbose);

/| Decode

in.reset ();
decodeBuffer.resetErrorinfo ();

stat = pdu. decodeFrom decodeBuffer);

if (0 == stat) {
if (trace) {
printf ("decoded XM. nessage:\n");
pdu. print ("Add_Qutput");

printf ("\n");
}
}
el se i f (RTERR_SCAPFAULT == stat) {
if (trace) {

printf ("decoded XM. nessage:\n");

115

Generated C++ Class Methods

fault.print ("Add_Fault");

printf ("\n");
}
}
el se {
printf ("Decoding failed\n");
decodeBuffer.printErrorlnfo();
return stat;
}

Generated XML C++ Validation Methods

The code generated to validate XML messages is similar to that for decoding in that either the custom pull-parser or
off-the-shelf XML parser softwareis used. See the previous section on generated decode methods for a description of
the parsers. Special SAX handlers that are used by these parsers are generated to do the validation processing.

Generated C++ Method Format and Calling Parameters

Generated validation and SAX method implementations are written to a.cpp file with aname of the following format:
<xsdFi | eName>WVI dt . cpp

where <xsdFileName> isthe base name of the X SD file being parsed. For example, if code is being generated for file
x.xsd, validation methods for each global element defined in the specification will be written to xVIdt.cpp. If the file
being processed isaWSDL file, the suffix would be WSDLVIdt.c (for example, x.wsdl would produce X\WSDLVIdt.c).

The main method for validating an XML document that corresponds to an XSD global element is the validate or
validateFrom methods. The validate method exists in the OSXSDGlobal Element base class and validates a message
from the message buffer or stream associated with the class to the XSD type object instance. A validateFrom method
is generated for each globa element that is not referenced by any other types. This method takes as an argument a
message buffer of stream reference. The method reads the XML message from this buffer or stream and validates it.

Procedure for Calling C++ Validation Methods

The procedure to invoke a C++ validation method is as follows:

1. Create an instance of an input stream or message buffer object from which the XML message to be validated will
be read.

2. Create an instance of the generated global element control class.
3. Invoke the control class validation method.
4. Validation successisindicated by a zero return status code.

5. If validation failed, the message buffer or stream printErrorInfo method can be invoked to print the reason for the
validation failure.

A program fragment that could be used to validate an employee record is as follows:

#i ncl ude "enpl oyee. h"
#include "rtxm src/rtXm CopMsgBuf . h"

int main (int argc, char** argv)

116

Generated C++ Class Methods

int i, stat;

const char* filename = "nmessage. xm";

OSBOOL trace = TRUE, verbose = FALSE;

/1l Step 1: create instance of global element type class
Per sonnel Record val ue;

/]l Step 2: create an input stream from which the nessage will be read

OSFil el nput Streamin (fil enane);
OSXMLDecodeBuf f er decodeBuffer (in);

/1l Step 3: create a control class instance to tie the data object
/1 and input stream object together.

per sonnel Recor d_CC per sonnel Record (decodeBuffer, value);

if (verbose)
rtxSet Di ag (personnel Record.getCtxtPtr(), 1);

/1 Step 4: Validate
stat = personnel Record. validate();
if (0 == stat) {

if (trace) {
printf ("message is valid\n");

}
}
el se {
printf ("Validation failed\n");
decodeBuffer.printErrorlnfo();
}

return stat;

117

Chapter 9. XBinder C Runtime Library

The XBinder C Runtime Library contains low-level functions that are assembled by the XBinder compiler to accom-
plish the encoding and decoding of XML messages. This library also contains common functions for memory man-
agement, stream operations, linked list handling, and character text conversions.

The following libraries make up the XBinder run-time;

» osysrtxml — contains low-level functions to implement the encoding and decoding of standard XML messages for
the various XML schematypes.

» osysrtdom - contains low-level functions that implement an abstract (Document Object Model) DOM interface.
These functions are used when a user generates code with the -dom compilation switch. This is expected to be
used with a concrete DOM implementation. XBinder provide adefault implementation based on the libxml2 DOM

implementation.

e osysrt — contains common low-level functions for memory management, etc.

There are severa variations of the C XML and common run-time library files for Windows. The following table
summarizes what options were used to build each of these variations:

Library Files

Description

osysrt_a.lib
osysrtxm _a.lib
osysrtdoma.lib

Static single-threaded libraries. These were built with the -ML option. These are not
thread-safe. However, they provide the smallest footprint of the different libraries

osysrtxmimt_a.lib
osysrtdommt_a.lib

osysrtxml.lib DLL library. Thisis used to link with the osysrtxml.dll dynamic link library. This con-
tains al of the function from all of the static libraries described above.
osysrtmt_allib Static multi-threaded libraries. These libraries were built with the -MT option. They

should be used if your application contains threads and you wish to link with the static
libraries (note: the DLL’ s are aso thread-safe).

osysrtmd_a.lib
osysrtxmimd_a.lib
osysrtdommd_a.lib

DLL-ready multi-threaded libraries. These libraries were built with the — MD option.
They alow linking additional object modules in with the runtime modules to produce
larger DLL's.

For dynamic linking on UNIX/Linux, ashared object version of each run-timelibrary isincluded inthelib subdirectory.
Thisfile typically has the extension .so (for shared object) or .dl (for shared library). See the documentation for your
UNIX compiler to determine how to link using these files (it varies for different types of UNIX systems).

A version of the libraries is available that contains run-time source code making it possible for the enduser to build
customized versions that are further optimized or that use other non-standard compiler options.

118

Chapter 10. XML Run-time Library
Functions

The XML low-level C encode/decode functions are used to encode and decode an XML instance of an XML schema
typed variable. These functions areidentified by their prefixes: rtXmlEnc for encode, rtXmlDec for decode, rtXmlpDec
for pull-parser based decode, rtSax for SAX helper functions, and rtXml for utility functions. The following sections
describe these functions.

XML C Encode Functions

The XML C low-level encode functions handle the XML encoding of simple XML schema data types. Calls to these
functions are assembled in the C source code generated by the XBinder compiler to accomplish the encoding of
complex structures. These functions are also directly callable from within a user's application program if the need to
accomplish alow level encoding function exists.

The procedure to call a low-level encode function is the same as the procedure to call a compiler generated encode
function described earlier. It isasfollows:

1. The rtXmlInitContext function must first be called to initialize a context block structure.

2. Either a stream must be set up or a memory buffer specified to receive the encoded message. To set up a stream,
one of the rtxStream functions must be called. To set up amemory buffer, the rtXml SetEncBufPtr function is used.

3. The rtXmlEncSartDocument function is called to add the standard XML document header to the buffer.
4. Encode functions are then invoked to encode the XML data types.
5. The rtXmlEncEndDocument function is then called to complete the encoding.

If a stream was used, the encoded message will have been written to the output stream. If a memory buffer was used,
the result of the encoding will start at the beginning of the buffer, or, if adynamic buffer was used, can be obtained by
calling rtXmlGetEncMsgPtr. The length of the encoded component can be obtained by calling the C standard library
strlen function. The encoded stream is a standard UTF-8 null-terminated text string.

For example, the following code fragment could be used to encode a document with a single, boolean value.

OSOCTET buf [1000] ;

OSBOOL bool Value = TRUE; /* true */
OSCTXT ct xt;

int msglen, stat;

rtXm I nitContext (&ctxt);
rt Xm Set EncBuf Ptr (&ctxt, buf, sizeof(buf));

stat = rtXm EncSt art Docunent (&ctxt);
if (stat '=0) {

rtxeErrPrint (&ctxt);

exit (-1);
}

stat = rtXm EncBool (&ctxt, bool Val ue, “bool Val ue”);
if (stat '=0) {

119

XML Run-timeLibrary Functions

rtxErrPrint (&ctxt);
exit (-1);
}

stat = rtXm EncEndDocunent (&ctxt);
if (stat '=0) {

rtxErrPrint (&ctxt);

exit (-1);
}

neglen = strlen (buf);

The msglen variable now contains the length (in octets) of the encoded boolean value and the encoded data starts at
the beginning of buf.

A complete reference to al of the built-in C XML encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

XML C Pull-Parser Based Decode Functions

XML C pull-parser based decode functions handle the decoding of simple XSD types. Calls to these functions are
assembled in the C source code generated by the XBinder compiler to decode complex XML schema-based messages.
In general, these complement the encoding model in which individual functions exist for each type. This differs from
the SAX-based functions described below which use a different model.

As an example, the code documented above to encode a simple boolean value can be reversed to decode the value:

OSCTXT ct xt;

int stat;

const char* filename = "nmessage. xm";
OSBOOL val ue;

/* Init context structure */

stat = rtXm I nitContext (&ctxt);

if (0 !=stat) {
printf ("Context initialization failed.\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Create input source object */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0 !=stat) {
printf ("Unable to open file input stream\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Match expected start tag */

stat = rtXm pMatchStart Tag (&ctxt, OSUTF8("bool Val ue"), -1);
if (0 !=stat) {

120

XML Run-timeLibrary Functions

printf ("parse initial tag failed\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Decode bool ean val ue */

stat = rtXm pDecBool (&ctxt, &value);
if (0 !=stat) {
printf ("decode bool ean failed\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Match expected end tag */

stat = rtXm pMat chEndTag (&ctxt, 0);

if (0 !=stat) {
printf ("parse initial tag failed\n");
rtxErrPrint (&ctxt);
return stat;

}

rtxStreantl ose (&ctxt);
rt xFreeCont ext (&ctxt);

XML C SAX Based Decode Functions

XML C SAX based low-level decode functions handle the transformation of XML simple type content into C type
program variable datausing a SAX interface. Callsto these functions are assembled in the C SAX handler source code
generated by the X Binder compiler to decode complex XML schema-based messages. They are normally invoked from
within agenerated SAX endElement function to parse buffered data that was collected in a SAX characters function.

These functions are also directly callable from within a user's application program if the need to decode a primitive
dataitem exists. Note, however, that the low-level C decode functions only decode the datawithin XML tagged fields,
not the tags themselves. Thus, it is not possible to directly decode a string such as<mny | nt >10</ my| nt > by calling
these functions. It would only be possible to convert “10” into a C integer value. To parse the entire XML string, it
would be necessary to invoke the XML parser with registered SAX handlers that could parse all of the items.

A complete reference to al of the built-in C XML encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

XML C SAX Parser Interface

The XML C SAX Parser Interface functions form the abstraction layer between a third-party XML parser and the
XBinder generated code and C run-time. XBinder uses the SAX parsing capability of these parsers to accomplish
decoding and validation of XML documents. The following sections describe the parser interfaces that are available.

LibXML2

An interface to the Gnome LibXML2 parser library (http://xmlsoft.org) is included. This is the default parser used
for SAX-based decoding. This library contains functionality for DOM, XPath processing, and canonicalization for

121

XML Run-timeLibrary Functions

security processing. Theinterface to thislibrary isimplemented in the rtXmiLibxmlIF.c file. A compiled object fileis
included in the lib subdirectory which can be used for linking with the library.

Source code form the libxml2 parser interface can be found in the libxml2src directory in the XBinder distribution.
Libraries in various configurations (single-threaded, multi-threaded, etc.) are built from this code base and are part
of the XBinder run-time libraries.

Expat

Also included in the package is the open source Expat XML parser (http://expat.sourceforge.net). This is a small,
lightweight parser that contains basic SAX parsing functionality. The source file containing the Expat parser interface
is rtXmlExpatlF.c in the rtxmlsrc subdirectory. The full source code and license for this parser can be found in the
expatsrc subdirectory.

To use this library instead of libxml2, the xmlparser.mk file must be modified to include the file paths to the expat
files. A file names xmlparser-expat.mk isincluded in the distribution that should have all teh correct settings. Thisfile
can simply be renamed to xmlparser.mk to use the Expat parser.

Micro Parser

XBinder includes a micro parser designed for systems where low memory usage is of the greatest importance. This
parser contains basic SAX parsing functionality, but does not catch many well formedness errorsin the XML content.
The source file containing the complete Micro Parser interface and implementation is rtXmiMicrol F.c in the rtxmisrc
subdirectory. To use the Micro Parser, copy the xmlparser-micro.mk file to xmlparser.mk.

XML C DOM Interface

An abstract interface to third party Document Object Model (DOM) implementations is available through the DOM
interface. This is defined in the file domAPI.h in the rtdomsrc subdirectory. A user is required to implement these
functions to interface with the DOM implementation of their choice.

A default implemetation that interfaces to the libxml2 DOM library is available in the domAPI.c file.
The steps required to create your own DOM interface to XBinder generated structuresis as follows:

1. Create an implemetation of all run-time functions defined in domAPI.h. Note that the DOM structuresin thisfileare
simply defined as void pointers. Thisis because the actual definitions of these structures varies between implementa-
tions. Concrete mappings to the structure definitions are defined in the implementation file.

2. Compile your XSD specifications with the -dom command-line option instead of -xml. Thiswill cause functionsto
be generated that will call the abstract DOM functions.

3. The makefile will need to be modified to link with your DOM implementation library.

Note that the DOM interfaceis currently only available for C. A C++ interfaceis not available at thistime.

122

Chapter 11. JSON Run-time Library
Functions

The JSON low-level C encode/decode functions are used to encode and decode a JSON instance of an XML schema
typed variable. These functions are identified by their prefixes: rtJsonEnc for encode, rtJsonDec for decode.

JSON C Encode Functions

The JSON C low-level encode functions handle the JSON encoding of simple XML schema data types. Calls to
these functions are assembled in the C source code generated by the XBinder compiler to accomplish the encoding
of complex structures. These functions are also directly callable from within a user's application program if the need
to accomplish alow level encoding function exists.

The procedure to call a low-level encode function is the same as the procedure to call a compiler generated encode
function described earlier. It isasfollows:

1. The rtxinitContext function must first be called to initialize a context block structure.

2. Either a stream must be set up or a memory buffer specified to receive the encoded message. To set up a stream,
one of the rtxStream functions must be called. To set up amemory buffer, the rtxl nitContextBuffer function is used.

3. Encode functions are invoked to encode the JSON data types.

If a stream was used, the encoded message will have been written to the output stream. If a memory buffer was used,
the result of the encoding will start at the beginning of the buffer. The encoded stream is a standard UTF-8 null-
terminated text string.

For example, the following code fragment could be used to encode a document with asingle, boolean value.

Bool ean dat a;

OSCTXT ct xt;

i nt i, stat;

const char* filenane = "nessage.json";

/* Init context */

stat = rtxlnitContext (&ctxt);

if (0 !=stat) {
printf ("Context initialization failed.\n");
rtxerrPrint (&ctxt);
return stat;

}
/* Popul ate structure of generated type */
data = TRUE;

stat = rtxStreanfFil eCreateWiter (&ctxt, filenane);

if (0 == stat)
stat = JsonEnc_personnel Record (&ctxt, data);
rtxStreanCl ose (&ctxt);
if (0 == stat) {
printf ("encoded nmessage:\n");

123

JSON Run-time Library Functions

rtxPrintFile (fil enane);

printf ("\n");

}

el se {
printf ("Encoding failed\n");
rtxErrPrint (&ctxt);

}

}

A complete reference to all of the built-in C JSON encode functions is available in the XBinder C/C++ Runtime
Reference Manual.

JSON C Decode Functions

JSON C decode functions handle the decoding of simple XSD types. Calls to these functions are assembled in the C
source code generated by the XBinder compiler to decode complex XML schema-based messages. In general, these
complement the encoding model in which individual functions exist for each type.

As an example, the code documented above to encode a simple boolean value can be reversed to decode the value:

Bool ean pdu;

OSCTXT ctxt;

i nt i, stat;

const char* filename = "nessage.json";

/* Init context */

stat = rtxlnitContext (&ctxt);

if (0 !=stat) {
printf ("Context initialization failed.\n");
rtxErrPrint (&ctxt);
return stat;

}

/* Create input source object */

stat = rtxStreanFil eCreat eReader (&ctxt, filenane);
if (0 !=stat) {
printf ("Create file input streamfailed.\n");
rtxErrPrint (&ctxt);
rt xFreeCont ext (&ctxt);
return stat;

/* Call conpiler generated decode function */
if (stat == 0)
stat = JsonDec_personnel Record (&ctxt, &pdu);

if (stat == 0) {
printf ("Decode was successful\n");
printf ("Decoded record:\n");
Print _Bool ean ("Bool ean”, pdu);

}

el se {

124

JSON Run-time Library Functions

printf ("decode failed\n");
rtxErrPrint (&ctxt);

}

rtxStreant ose (&ctxt);
rt xFreeCont ext (&ctxt);

A complete reference to al of the built-in C JSON decode functions is available in the XBinder C/C++ Runtime
Reference Manual.

125

Chapter 12. C Common Runtime Library

The C common run-time library contains common functions used by the XML C low-level encode/ decode functions.
These functions could be common to other applicationsaswell. They areidentified by their rtx prefixes. Thefollowing
genera categories of functions are provided:

» Context management functions

* Memory management functions

* Memory buffer management functions

» Diagnostic trace functions

 Error formatting and print functions

» Formatted printing functions

» Linked list utility functions

» Character string conversion utility functions

The following sections describe these functions.

Common Include Files

The common runtime library includes the following common header files:
» 0sSysTypes.h common type definitions

* rtxCommon.h common function prototypes

* rtxContext.h run-time context (OSCTXT) structure definition

» rtxErrCodes.h error code contants

0sSysTypes.h

The osSysTypes.h header file contains all of the simple type definitions for character string data, integers, floating
point types, binary types, etc. The following common type definitions are included:

t ypedef void OSVoi d;

t ypedef voi d* OSVoi dPt r;

t ypedef unsigned char OSBOCL;

typedef signed char OSI NTS;

t ypedef unsigned char OSUI NTS;

typedef short OSI NT16;

t ypedef unsigned short OSUI NT16;

typedef int OSI NT32;

t ypedef unsigned int OSUI NT32;

t ypedef OSUl NT8 OSCOCTET;

t ypedef OSUI NT8 OSUTF8CHAR, /* UTF-8 character */
t ypedef OSU NT16 OSUNI CHAR; /* Uni code character */
t ypedef OSUI NT32 0S32BI TCHAR;

126

C Common Runtime Library

t ypedef doubl e OSREAL;
/* binary string type */

typedef struct OSDynCct Str {
OSUI NT32 nunoct s;
const OSOCTET* dat a;

} OSDynCct Str;

/[* XML string */

typedef struct OSXMLSTRI NG {
OSBOOL cdata; /* encode as a CDATA section */
const OSUTF8CHAR* val ue;

} OSXM.STRI NG

rtxCommon.h

The rtxCommon.h file contains all of the common function prototypes. This file also contains macro definitions for
inline code that is used to improve performance. These macros are used in both the common runtime code and also
added to generated code by the XBinder compiler.

All of the runtime functions defined within this file are documented in the common runtime function sections below.

rtxContext.h

The rtxContext.h file contains the definition of the runtime context block structure — OSCTXT. This structure is used
in practically all runtime function cals. It provides acommon work areafor the functionsto preserve state information
needed in the encoding or decoding of messages.

A brief description of some of the key fields within this structure is as follows:

buffer — This contains information on the memory buffer to which a message is being encoded or holds an in-
memory copy of a message being decoded. This may also be used as a temporary buffer if stream-based encoding
or decoding is being done. The OSBuffer structure contains a data pointer to the memory buffer itself as well as
the current byte index and bit offset.

savedinfo — Thisis used to save a copy of the buffer information in places where an aternate buffer may need to
be substituted. Sometimes it is possible to save the buffer information on the stack, but there are instances where
thisvariableis needed for that purpose.

errInfo—Thisisastack containing information on errors that were encountered in formatting or parsing amessage.
The OSErrinfo type contains a status code, run-time error parameter stack, and an error location stack that is used
to save source file/line number information so that a trace stack can be provided in the error message print routine.

pMemHeap — Thisisapointer to the memory heap managed by the runtime software. Thistracksall of the memory
usage used in the encoding or decoding of a specific message. See the section on memory management functions
for more details on this.

level — This variable contains the current nesting level of the data within the current XML or other message type
that is being encoded or decoded.

state— Thisisused to hold the current processing state when parsing an XML message. It isprimarily used in SAX
parsing to determine if the last element parsed was a start tag, data, or end tag.

127

C Common Runtime Library

e pStream — Thisis used to hold information about an input or output stream if data is being directly read from or
written to a stream. See the section on stream handling functions for more details on this.

e pApplnfo-Thisisreserved for application specific information.

Context Management Functions

Context management functions handle the alocation, initiaization, and destruction of context variables (variables
of type OSCTXT). These variables hold all of the working data used during the process of encoding or decoding a
message. The context provides thread safe operation by isolating what would otherwise be global variableswithin this
structure. The context variable is passed from function to function as a message is encoded or decoded and maintains
state information on the encoding or decoding process.

The main functionsin this group that a user should be aware of are the following:

» rtxlnitContext - Thisisthe first function that must be called to initialize a context block structure before it can be
used as an argument in subsequent function calls. This function initializes all internal variables within the context
to their start values.

 rtxInitContextBuffer - Thisfunction associates a memory buffer with a context. This memory buffer can be used
to asthetarget for encoding an XML message or as the source to read from for decoding a message.

 rtxFreeContext - Thisfunction is used to free all working memory held within the context. All memory allocation
done using memory management functions are tracked within the context. All of this memory can be released at
once by calling this function. It should be the last function called when all work using a particular context variable
is complete.

Other functions exist for doing further operations on contexts including copying and setting data within. A full de-
scription of al context management functions can be found in the XBinder C/C++ Runtime Reference Manual.

Memory Management Functions

The XBinder runtime provides a high level memory management APl to handle the alocation and deallocation of
dynamic memory. These functions form an abstraction layer above the standard C memory management functions
malloc, free, and realloc. Thisblock of functions can be replaced by the user with custom code to implement adifferent
memory management scheme. For example, an embedded system application might want to use a fixed-sized static
block from which to allocate.

The built-in implementation of the high level memory management API implements a nibble-all ocation memory man-
agement algorithm that provides superior performance to calling malloc and free directly. This agorithm causes mem-
ory blocks to be allocated up front in larger sizes and then subsequently split up when future allocation requests are
received. These blocks can be reset and reused in applications that are constantly allocating and freeing memory (for
example, a decoder that constantly reads and decodes XML messages in along running loop).

The nibble-allocation memory management can be tuned by setting the default memory heap block size. The way
memory management worksisthat alarge block of memory isallocated up front on the first memory management call.
Thisblock isthen subdivided on subsequent calls until the memory isused up. A new block isthen started. The default
valueis4K (4096) bytes. The value can be set lower for space constrained systems and higher to improve performance
in systemsthat have sufficient memory resources. To set the block size, thefollowing run-time function should be used:

voi d rtxMentet Def Bl kSi ze (OSUI NT32 bl kSi ze);

This function must be called prior to context initialization.

128

C Common Runtime Library

High Level Memory Management API

The high-level memory management API consists of C macros and functions called in gemerated code and/or in
application programs to allocate and free memory within the XBinder run-time.

The key memory management functions that a user might use are the following:

» rtxMemAlloc - Thisfunction allocates ablock of memory in much the sameway malloc would. Theonly difference
from the user’ s perspectiveisthat a pointer to a context structureisrequired as an argument. The allocated memory
istracked within this context.

e rtxMemFreePtr - This function releases the memory held by a pointer in much the same way the C free function
would. Theonly differencefrom auser’ sperspectiveisthat apointer to acontext structureisrequired asan argument.
This context must have been used in the call to rtxMemAlloc at the time the memory was allocated.

» rtxMemFree - Thisfunction releases all memory held within a context.

* rtxMemReset - Thisfunctionsresetsall memory held within acontext. The difference between thisand thertxMem-
Free function is that this function does not actually free the blocks that were previously allocated. It only resets the
pointers and indexes within those blocks to allow the memory to be reused.

* rtxMemRealloc - Thisfunction worksin the same way as the C realloc function. It reallocates an existing block of
memory. Asin the other cases above, a pointer to a context structure is arequired argument.

Note that these memory management functions are only used in the generation of C code, not C++ (although a user
can use them in a C++ application). For C++, the built-in new and delete operators are used to ensure constructors
and destructors are properly executed.

For afull description of these and other memory management functions, see the XBinder C/C++ Runtime Reference
Manual.

It is possible to replace the high-level memory allocation functions with functions that implement a custom memory
management scheme. This is done by implementing some (or al) of the C rtxMemHeap functions defined in the
following interface (note: a default implementation is shown that replaces the XBinder memory manager with direct
callsto the standard C run-time memory management functions):

#i ncl ude <stdlib. h>
#i ncl ude "rtxMenory. h"

/* Create a menory heap */
int rtxMenHeapCreate (voi d** ppvMenHeap) ({
return O;

}

/* Al'locate nmenory */
voi d* rtxMenHeapAl |l oc (voi d** ppvMenHeap, int nbytes) {
return nmall oc (nbytes);

}

/* Al'locate and zero nenory */

voi d* rtxMenHeapAl |l ocZ (voi d** ppvMenHeap, int nbytes) {
voi d* ptr = malloc (nbytes);

if (O !=ptr) menset (ptr, O, nbytes);

return ptr;

129

C Common Runtime Library

}

/* Free nenory pointer */
void rtxMenHeapFreePtr (voi d** ppvMenHeap, void* nmemp) ({
free (nemp);

}

/* Real |l ocate menory */
voi d* rtxMenHeapReal | oc (voi d** ppvMenHeap, void* memp, int nbytes_) {
return realloc (memp, nbytes);

}

/* Clears heap nmenory (frees all nmenory, reset all heap's variables) */
voi d rtxMenHeapFreeAl |l (void** ppvMenHeap) ({

/* should renove all allocated nenory. there is no analog in standard nmeno
management. */

}

/* Frees all nenory and heap structure as well (if was allocated) */
voi d rtxMenHeapRel ease (voi d** ppvMenHeap) ({
/* should free all nenory allocated + free menory heap object if exists */

}

In most cases it is only necessary to implement the following functions: rtxMemHeapAlloc, rtxMemHeapAllocZ,
rtxMemHeapFreePtr and rtxMemHeapRealloc. Note that there is no analog in standard memory management for
XBinder's rtxMemFree macro (i.e. the rtxMemHeapFreeAll function). A user would be responsible for freeing all
itemsin agenerated XBinder structure individually if standard memory management is used.

The rtxMemHeapCreate and rtxMemHeapRel ease functions are specialized functions used when a special heap isto
be used for allocation (for example, a static block within an embedded system). In this case, rtxMemHeapCreate must
set the ppvMemHeap argument to point at the block of memory to be used. This will then be passed in to al of the
other memory management functions for their use through the OSCTXT structure. The rtxMemHeapRel ease function
can then be used to dispose of this memory when it is no longer needed.

To add these definitions to an application program, compile the C source file (it can have any name) and link the
resulting object file ((OBJ or .O) in with the application.

Using the Built-in Compact Memory Management

In the above example, we gave an exampl e of how the high level memory management API could be reimplemented to
make direct callsto the standard C memory functions. Thisis one way to replace the default nibble memory allocation
algorithm with standard memory all ocation. Userswho have the runtime source code can easily achieve the samething
by definingthe_ MEMCOMPACT C compiletime setting. This can be done by either adding-D_MEMCOMPACT to
the C compiler command-line arguments, or by uncommenting this item at the beginning of the rtxMemory.h header
file

Uncoment this definition before building the C or C++ run-tinme
libraries to enable conpact nenory managenent. This will have a
smal | er code footprint than the standard nmenory nanagenent; however,
* the performance may not be as good.

*/

[*#defi ne _MEMCOWPACT*/

* % F X

130

C Common Runtime Library

The only difference between these two approaches is that with this approach, tracking of allocated memory is done
through the context. This makes it possible to provide an implementation of the rtxMemHeapFreeAll function as
described above. This memory management scheme is slower than the default manager (i.e. nibble-based), but has
asmaller code footprint.

Low Level Memory Management API

It is possible to replace the core memory management functions used by the XBinder run-time memory manager. This
has the advantage of preserving the existing management scheme but with the use of different core functions. Using
different core functions may be necessary on some systemsthat do not have the standard C run-time functions malloc,
free, and realloc, or when extra functionality is desired.

To replace the core functions, the following run-time library function would be used:

void rtxMentet Al | ocFuncs (OSMal | ocFunc nal | oc_func,
OSReal | ocFunc real | oc_func, OSFreeFunc free_func);

Themalloc, realloc, and free functions must have the same prototype as the standard C functions. Some systems do not
have arealloc-likefunction. In this case, realloc_func may be set to NULL. Thiswill cause the malloc_func/free_func
pair to be used to do reallocations.

This function must be called before the context initiaization function (rtinitContext) because context initialization
requires low level memory management facilities be in place in order to do its work.

UTF-8 String Functions

The UTF-8 string functions handle string operations on UTF-8 encoded strings. This is the default character string
data type used for encoded XML data. UTF-8 strings are represented in C as strings of unsigned characters (bytes) to
cover the full range of possible single character encodings.

Thisgroup of functionsencompassesfunctionsfor doing conversionsto and from UTF-8to Unicode aswell asstandard
string manipuation functions such as exist in the C standard string library.

For acompletelist and full description of all of the UTF-8 string functions, see the XBinder C/C++ Runtime Reference
Manual.

Doubly-Linked List Utility Functions

The XBinder compiler will generate a mapping to the OSRTDList type for many kinds of repeating types. Thisisa
linked list structure type. The doubly-linked list utility functions are common routines for working with linked lists
of thistype.

Functions are available to initialize, append, insert, remove, and find elementsin lists. Some useful functionsin this
group are as follows:

» rtxDListInit - This function is used to initialize a linked list variable. This is first function that should be called
before working with alinked list variable.

e rtxDListAppend - This function is used to append an item to alinked list. The normal procedure for populating a
linked list variable isto first initialize it and then call this function to add items.

» rtxDListInsert - Thisfunction is used to insert an item into a specific location within alist.

» rtxDListRemove - Thisfunction is used to remove an item from alist.

131

C Common Runtime Library

For a complete list and full description of all of the doubly-linked list functions, see the XBinder C/C++ Runtime
Reference Manual.

Error Formatting and Print Functions

Error formatting and print functions allow information about encode/decode errors to be added to a context block
structure and then printed when the error is propagated to the top level.

The LOG_RTERR macro is inserted in the generated code by the compiler to record the position of an error in the
code and store information on the error in the context structure.

The OSRTASSERT macro can be used to test an assertion in much the same as the standard C assert call. If the
assertion is false, the macro will cause the program to exit and a printout showing the file and line number of failure
along with the failed condition will be shown.

Other key error handling routines for printing error information are as follows:

e rtxErrPrint - This function prints a message to standard output containing the error information recorded in the
context by callsto LOG_RTERR.

» rtxErrLogUsingCB - This function allows information on an error to be logged using a user defined callback
function. It is useful in environments where printing to standard output is not always an option (for example, in a
Windows GUI application or an embedded application).

For a complete list and full description of all of the error formatting and print functions, see the XBinder C/C++
Runtime Reference Manual.

Diagnostic trace functions

These functions add diagnostic tracing to the generated code to assist in finding where a problem might occur. Calls
to these macros and functions are added when the -trace command-line argument is used. The diagnostic message can
be turned on and off at both C compile and run-time. To C compile the diagnostics in, the TRACE macro must be
defined (-D_TRACE). To turn the diagnostics on at runtime, ther t xSet Di ag function must be invoked with the
val ue argument set to TRUE.

The key functionsin this group are as follows:
 rtxSetDiag - Thisfunction is used to turn diagnostic tracing on or off at run-time.

» rtxDiagEnabled - This function is used to determine if diagnostic tracing is currently enabled for the specified
context.

 rtxDiagHexDump - This function is used to print a diagnostics hex dump of a section of memory.
 rtxDiagPrint - Thisfunction is used to print a diagnostics message to st dout .

For a complete list and full description of all of the diagnostic trace functions, see the XBinder C/C++ Runtime Ref-
erence Manual.

Input/Output Data Stream Utility Functions

This group of functions is used to operate on input or output data streams. The decode functions generated by the
XBinder compiler can read and decode from a stream that was created using these functions. A stream isan abstraction
of some physical input medium such as afile, memory buffer, or socket interface.

132

C Common Runtime Library

The key functionsin this group are as follows:

» rtxStreamFileCreateWriter - thisfunction opens afile for write access as an output stream.

* rtxStreamFileCreateReader - thisfunction opens afile for read access as an input stream.

e rtxStreamMemoryCreateWriter - thisfunction opens a memory buffer for write access as an output stream.

» rtxStreamMemoryCreateReader - this function opens a memory buffer (byte array) for read access as an input
stream.

» rtxStreamSocketCreateWriter - thisfunction open a socket for write access as an output stream.

* rtxStreamSocketCreateReader - thisfunction open a socket for read access as an input stream.
 rtxStreamRead -This function reads data from the input stream into a given memory buffer.

» rtxStreamWrite -This function writes data to an output stream.

 rtxStreamFlush -This function flushes the output stream and forces any buffered output octets to be written out.

» rtxStreamClose - Thisfunction closestheinput or output stream and rel eases any system resources associated with
the stream. For output streams this function also flushes all internal buffers to the stream.

For a complete list and full description of all of the stream input/output functions, see the XBinder C/ C++ Runtime
Reference Manual.

TCP/IP or UDP socket utility functions

This group of functions allows TCP/IP or UDP socketsto be set up for interprocess communications. These functions
can be used in conjunction with the stream input/output functions described above to alow direct encoding and de-
coding of XML messages to and from socket connections.

The key functions in this group are as follows:

 rtxSocketAccept - This function accepts an incoming connection request on a socket.

 rtxSocketBind - This function associates alocal address with a socket.

 rtxSocketConnect -This function establishes a connection on a specified socket.

» rtxSocketCreate - This function creates a new socket.

 rtxSocketListen - Thisfunction places a socket in a state where it is listening for an incoming connection.

 rtxSocketRecv -This function receives (reads) data from a connected socket.

rtxSocketWrite - This function writes data to a socket connection.

For a complete list and full description of all of the stream input/output functions, see the XBinder C/ C++ Runtime
Reference Manual.

SOAP and HTTP utility functions

This group of functions provides basic Simple Object Access Protocol (SOAP) and Hypertext Transfer Protocol
(HTTP) support to allow XML messages created/parsed with XBinder to be exchanged with SOAP endpoints (for
example, with aweb-service application).

133

C Common Runtime Library

 rtxSoaplnitConn - Initialize a connection structure for use in communicating with a SOAP endpoint.
* rtxSoapConnect - Connect to a SOAP endpoint.

* rtxSoapSendHttp - Send an HTTP request to a SOAP endpoint.

 rtxSoapRecvHttp - Receive aresponse from a SOAP endpoint.

» rtxSoapRecvHttpContent - Receive HTTP content from a SOAP endpoaint.

For a complete list and full description of all of the SOAP functions, see the XBinder C/C++ Runtime Reference
Manual.

134

Chapter 13. C++ Built-in Runtime Classes

C++ runtime classes are the foundation on which generated C++ code is built. Some of these classes such as the
message buffer classes are for direct use in application programs. Others, such as the X SD type base classes, are used
primarily by the XBinder as base classes for generated classes. The general categories of C++ built-in runtime classes
are asfollows:

» Context management class
» Message buffer classes

* Global element base class
e XSD type base classes

A cursory description of these classes follows. For a full description, see the XBinder C/C++ Runtime Reference
Manual.

Context Management Class

The context management class (OSRTContext) manages an XBinder context structure used for C function calls. In
general, for C++, thisstructureishidden in that it is encapsul ated within the message buffer and global element classes.
The user needs to be aware of its existence, however, in cases where a C run-time functions needs to be called from
within aC++ application. In these cases, the message buffer or global context class containsamethod called getCtxtPtr
that can be used to retrieve a pointer to the underlying context variable. Note that it does not matter from which class
this method is invoked because the message buffer and global element classes share a common context variable.

The context is shared between the global element and message buffer classes by means of the OSRTCtxtPtr referenced
counted pointer class. Thisclassis used to maintain areference count on the context so that it remainsin scope aslong
as either a message buffer or global element classisin scope. A user can invoke the getContext method from either
amessage buffer or global element object in order to obtain a reference to this reference counter pointer object. This
would allow them to hold onto the context after all message buffer or global element objects go out of scope should
they have a specialized need to do this (for example, if they were using the C memory management facilities that use
the managed heap that is stored within the context).

Message Buffer Classes

Message buffer classes describe the memory buffers into which XML message are encoded or from which XML
messages are decoded. The main base classfor all memory buffer derivationsis OSRTMessageBuffer|F. Thisisapure
virtual classthat defines the interface all derived message buffer or stream classes must implement.

The base classfor all in-memory message buffersis OSRTMessageBuffer. Thistoo isabstract. It isused as the base for
the OSXMLMessageBuffer class which is the base class for XML message encoding or decoding. From this, concrete
XML encode (OSXMLEncodeBuffer) and decode (OSXMLDecodeBuffer) buffer classes are derived.

To encode an XML message, a user would need to describe the target buffer to which it is to be written. This is
what the OSXMLEncodeBuffer classis used for. The default constructor allows a dynamic buffer to be setup that the
encoder will manage the memory for to ensure there is enough space for a given encode operation to succeed. Another
constructor is available that allows a fixed-sized buffer to be specified by providing the start address and buffer size.
If this buffer is not large enough to hold a given encoded message, a buffer overflow error is returned from the encode
method that is using the buffer.

135

C++ Built-in Runtime Classes

Global Element Base Class

The global element base class - OSXSDGlobal Element - is the base class from which generated XSD global element
control classes are derived. These are the main entry points for encoding or decoding items within an XML schema
specification. The control class derived from this class is typically constructed with a reference to a variable of the
type to be encoded or decoded as well as the associated message buffer. For example, from the C++ employee sample
program writer program is the following snippet of code:

Per sonnel Record val ue;
OSXMLEncodeBuf f er buffer;
per sonnel Record_CC pdu (buffer, value);

These three lines of code form the necessary associations to accomplish the encoding of an employee record. The
global element declaration in the employee.xsd file is the following:

<xsd: el enent nane="per sonnel Record" type="Personnel Record"/>

This declares the personnel Record element to be of type PersonnelRecord. The XBinder compiler generates the Per-
sonnelRecord C++ class for the Personnel Record X SD type. It also generates the personnelRecord CC class for the
personnel Record X SD global element (the CC suffix isan abbreviation for “control class’). The series of statements
above bind an instance of this generated type class with an encode message buffer to accomplish the encoding of an
instance of the personnelRecord global element.

XSD Type Base Classes

The X SD type base classes are the base classes from which X Binder-generated C++ classesfor X SD typesare derived.
The main base class from which all XSD type classes are derived is the OSRTBaseType class. Generated classes for
many types are derived directly from this. However, the following intermediate built-in classes are also present from
which generated classes are also derived:

* OSXMLStringClass - Thisis the base class for XSD string types such as xsd:string, xsd: token, etc.. It is derived
from the OSRTBaseType class. It provides member variables to hold a UTF-8 string value as well as a CDATA
flag to indicateif the string should be encoded asa CDATA section. Thereisalso an OSXMLSTLStringClass which
encapsulates an STL std::string variable. Thisis used the the -usestl command-line option is used.

* OSDynOctStrClass - This is the base class for the XSD hexBinary and base64Binary string types. It is derived
from the OSRTBaseType class. It provides member variables to hold binary datain native machine format.

* OSRTDListClass - This is the base class for XSD repeating types that use linked lists. It is derived from the
OSRTBaseType classaswell asthe C OSRTDList structure. It provides methodsfor adding, retrieving, and removing
items from linked lists.

* OSRTObjListClass- Thisisthe base classfor XSD repeating types that hold objectsin linked lists. It issimilar to
the OSRTDListClass described above except that the base type for items in the list is OSRTBaseType. This allows
itemsin the list to be properly destructed when memory ownership for theitemsis transferred to the list object.

» OSXSDDateTimeClass - This is a utility class for operating on XSD date/time formats. It is derived from the
OSRTBaseType class aswell asthe C OSXSDDateTime structure. Although it is currently not used in any generated
classes (date/time classes are currently represented as strings), the class can be used to format or parse XSD date/
time strings in application programs.

136

C++ Built-in Runtime Classes

XML Parser Interface Classes

XML parser interface classes provide an object-oriented interfaceto third-party XML parser softwarethat isrequired to
producethe SAX event stream that X Binder generated code usesto decode and validate XML instances. Thefollowing
are the basic classes that define this interface:

« OSXML ContentHandler - Thisisthe baseinterface classthat defines the standard SAX startElement, characters,
and endElement virtual methods.

* OSXMLErrorHandler - Thisisthe base error handling classthat is used to report errorsin the SAX event stream.
This contains methods for reporting errors at various severity levelsincluding warning, error, and fatalError.

* OSXMLReader - This is the base class for an XML reader implementation. This contains various overloaded
versions of the virtual parse method. This is the entry method that an application calls to begin parsing an XML
document. The rtSaxCppCreateXmlReader global function is a factory function that is used to create a concrete
instance of this class.

e OSXMLDefaultHandlerIF - This class is derived from the OSXMLContentHandler and OSXMLErrorHandler
base classes. It is used as the base class for XBinder generated global element control classes which implement the
standard SAX content handler methods.

137

Appendix A. XBinder Error Codes

Thisappendix describesall of the status codesthat may be returned during program execution in two sections. Runtime
error messages are divided into two sections: the first for general errors that are not specifically related to XML, like
socket read errors or end of buffer messages, and the second for errors related specifically to XML, mismatched tags.

The runtime error messages may be found in the runtime documentation as well. Users may look at rt xs-
rc/rtxErrCodes. handrtxm src/rt Xm Err Codes. h for up-to-date lists of what may be returned.

General Runtime Error Messages

Thefollowing table contains runtime status codes that may occur during program execution. These failures are general
errors, not specifically related to XML.

Error Code

Error Name

Description

0

RT_OK

Normal completion status.

2

RT_OK_FRAG

Message fragment return status. This is returned when a
part of amessageis successfully decoded. The application
should continue to invoke the decode function until azero
statusis returned.

RTERR_BUFOVFLW

Encode buffer overflow. Thisstatus codeisreturned when
encoding into a static buffer and there is no space left for
the item currently being encoded.

RTERR_ENDOFBUF

Unexpected end-of-buffer. This status code is returned
when decoding and the decoder expects more data to be
availablebut instead runsinto theend of the decode buffer.

RTERR_IDNOTFOU

Expected identifier not found. Thisstatusisreturned when
the decoder is expecting a certain element to be present at
the current position and instead something different is en-
countered. An example is decoding a sequence container
type in which the declared elements are expected to bein
thegiven order. If an element isencountered that isnot the
one expected, this error israised.

RTERR_INVENUM

Invalid enumerated identifier. Thisstatusisreturned when
an enumerated value is being encoded or decoded and the
given value is not in the set of values defined in the enu-
meration facet.

RTERR_SETDUPL

Duplicate element in set. Thisstatus codeisreturned when
decoding an ASN.1 SET or XSD xsd:al construct. It is
raised if a given element defined in the content model
group occurs multipletimesin theinstance being decoded.

RTERR_SETMISRQ

Missing required element in set. This status code is re-
turned when decoding an ASN.1 SET or XSD xsd:all con-
struct and all required elementsin the content model group
are not found to be present in the instance being decoded.

RTERR_NOTINSET

Element not in set. This status code is returned when en-
coding or decoding an ASN.1 SET or XSD xsd:all con-
struct. When encoding, it occurs when avalue in the gen-
erated _order member variable is outside the range of in-
dexes of items in the content model group. It occurs on

138

XBinder Error Codes

Error Code

Error Name

Description

the decode side when an element is received that is not
defined in the content model group.

RTERR_SEQOVFLW

Sequence overflow. This status code is returned when de-
coding a repeating element (ASN.1 SEQUENCE OF or
X SD element with minmaxQOccurs> 1) and moreinstances
of the element are received the content model group.

RTERR_INVOPT

Invalid option in choice. This status code is returned
when encoding or decoding an ASN.1 CHOICE or XSD
xsd:choice construct. When encoding, it occurs when a
value in the generated 't' member variable is outside the
range of indexes of items in the content model group. It
occurs on the decode side when an element isreceived that
is not defined in the content model group.

-10

RTERR_NOMEM

No dynamic memory available. This status code is re-
turned when adynamic memory allocation request ismade
and an insufficient amount of memory is available to sat-
isfy the request.

-11

RTERR_INVHEXS

Invalid hexadecimal string. This status code is returned
when decoding ahexadecimal string value and acharacter
is encountered in the string that is not in the valid hexa
decimal character set ([0-9A-Fa-f] or whitespace).

-12

RTERR_INVREAL

Invalid real number value. This status code is returned
when decoding a numeric floating-point value and an in-
valid character isreceived (i.e. not numeric, decimal point,
plus or minus sign, or exponent character).

-13

RTERR_STROVFLW

String overflow. This status codeisreturned when afixed-
sized field is being decoded as specified by a size con-
straint and the item contains more characters or bytes then
this amount. It can occur when a run-time function is
called with afixed-sixed static buffer and whatever oper-
ation is being done causes the bounds of this buffer to be
exceeded.

-14

RTERR_BADVALUE

Bad value. This status code is returned anywhere where
an API is expecting a value to be within a certain range
and it not within thisrange. An exampleisthe encoding or
decoding date values when the month or day value is not
within the legal range (1-12 for month and 1 to whatever
the max days isfor a given month).

-15

RTERR_TOODEEP

Nesting level too deep. Thisstatus codeisreturned when a
preconfigured maximum nesting level for elementswithin
acontent model group is exceeded.

-16

RTERR_CONSVIO

Constraint violation. This status code is returned when
constraints defined the schemaare violated. Theseinclude
XSD facets such as minmaxOccurs, minmaxL ength, pat-
terns, etc.. Also ASN.1 value range, size, and permitted
alphabet constraints.

-17

RTERR_ENDOFFILE

Unexpected end-of-file error. This status code is returned
when an unexpected end-of-file condition is detected on

139

XBinder Error Codes

Error Code Error Name Description

decode. It is similar to the ENDOFBUF error code de-
scribed above except that in this case, decoding is being
done from afile stream instead of from a memory buffer.

-18 RTERR_INVUTF8 Invalid UTF-8 character encoding. This status codeis re-
turned by the decoder when an invalid sequence of bytes
is detected in a UTF-8 character string.

-19 RTERR_OUTOFBND Array index out-of-bounds. This status code is returned
when an attempt is made to add something to an array and
the given index is outside the defined bounds of the array.

-20 RTERR_INVPARAM Invalid parameter passed to afunction of method. Thissta-
tus code is returned by afunction or method when it does
an initial check on the values of parameters passed in. If
a parameter is found to not have a value in the expected
range, this error code is returned.

-21 RTERR_INVFORMAT Invalid value format. This status code is returned when a
value is received or passed into a function that is not in
the expected format. For example, the time string parsing
function expectsastring in the form "nn:nn:nn" where n's
are numbers. If not in this format, this error code is re-
turned.

-22 RTERR_NOTINIT Context not initialized. This status code is returned when
the run-time context structure (OSCTXT) is attempted to
be used without having been initialized. This can occur if
rtxInitContext is not invoked to initialize a context vari-
able before use in any other API call. It can aso occur is
thereisalicenseviolation (for example, evaluation license
expired).

-23 RTERR_TOOBIG Valuewill not fit in target variable. This statusis returned
by the decoder when atarget variableis not large enough
tohold aadecoded value. A typical caseisaninteger value
that istoo large to fit in the standard C integer type (typ-
ically a 32-bit value) on a given platform. If this occurs,
it is usually necessary to use a configuration file setting
to force the compiler to use a different data type for the
item. For example, for integer, the <isBiglnteger> setting
can be used to force use of a big integer type.

-24 RTERR_INVCHAR Invalid character. Thisstatus codeisreturned when achar-
acter isencountered that is not valid for agiven data type.
For example, if an integer value is being decoded and a
non-numeric character is encountered, this error will be

raised.

-25 RTERR_XMLSTATE XML state error. This status code is returned when the
XML parser

-26 RTERR_XMLPARSE XML parser error. This status code in returned when the

underlying XML parser application (by default, thisis Ex-
pat) returns an error code. The parser error code or text is
returned as a parameter in is not in the correct state to do
acertain operation.

140

XBinder Error Codes

Error Code

Error Name

Description

-27

RTERR_SEQORDER

Sequence order error. This status code is returned when
decoding an ASN.1 SEQUENCE or XSD xsd:sequence
construct. It is raised if the elements were received in
an order different than that specified the errinfo structure
within the context structure.

-28

RTERR_FILNOTFOU

File not found. This status code is returned if an attempt
is made to open afile input stream for decoding and the
given file does not exist.

-29

RTERR_READERR

Read error. Thisstatus codeif returnedif aread IO error is
encountered when reading from an input stream associated
with aphysical device such as afile or socket.

RTERR_WRITEERR

Write error. This status code if returned if awrite |O error
isencountered when attempting to output datato an output
stream associated with a physical device such as afile or
socket.

-31

RTERR_INVBASE6G4

Invalid Base64 encoding. This status code is returned
when an error is detected in decoding base64 data.

-32

RTERR_INVSOCKET

Invalid socket. This status code is returned when an at-
tempt is made to read or write from a scoket and the given
socket handleisinvalid. Thismay be the result of not hav-
ing established a proper connection before trying to use
the socket handle variable.

-33

RTERR_INVATTR

Invalid attribute. This status code is returned by the de-
coder when an attributeisencounteredinan XML instance
that was not defined in the XML schema.

RTERR_REGEXP

Invalid regular expression. This status code is returned
when asyntax error isdetected in aregular expression val-
ue. Detail s of the syntax error can be obtained by invoking
rtxErrPrint to print the details of the error contained within
the context variable.

-35

RTERR_PATMATCH

Pattern match error. This status code is returned by the
decoder when avaluein an XML instance does not match
the pattern facet defined inthe XML schema. It can also be
returned by numeric encode functionsthat cannot format a
numeric valueto match the pattern specified for that value.

-36

RTERR_ATTRMISRQ

Missing required attribute. This status code is returned by
the decoder when an XML instance is missing a required
attribute value as defined in the XML schema.

-37

RTERR_HOSTNOTFOU

Host name could not be resolved. This status code is re-
turned from run-time socket functions when they are un-
able to connect to a given host computer.

RTERR_HTTPERR

HTTP protocol error. Thisstatus codeis returned by func-
tionsdoing HT TP protocol operations such as SOAPfunc-
tions. It is returned when a protocol error is detected. De-
tails on the specific error can be obtained by calling rtx-
ErrPrint.

141

XBinder Error Codes

Error Code

Error Name

Description

-39

RTERR_SOAPERR

SOAP error. This status code when an error is detected
when tryingto execute a SOAP operation.

-40

RTERR_EXPIRED

Evaluation license expired. This error is returned from
evaluation versions of the run-time library when the hard-
coded evaluation period is expired.

RTERR_UNEXPELEM

Unexpected element encountered. This status code is re-
turned when an element is encountered in aposition where
something else (for example, an attribute) was expected.

RTERR_INVOCCUR

Invalid number of occurrences. This status code is re-
turned by the decoder when an XML instance contains a
number of occurrences of arepeating element that is out-
side the bounds (minOccursmaxOccurs) defined for the
element in the XML schema.

RTERR_INVMSGBUF

Invalid message buffer has been passed to decode or vali-
date method. This status codeisreturned by decode or val-
idate method when the used message buffer instance has
type different from OSMessageBufferl F:: XML Decode.

RTERR_DECELEMFAIL

Element decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific element on which a decode error was detected to
be identified.

RTERR_DECATTRFAIL

Attribute decode failed. This status code and parameters
are added to the failure status by the decoder to allow the
specific attribute on which a decode error was detected to
be identified.

RTERR_STRMINUSE

Stream in-use. Thisstatus codeisreturned by stream func-
tionswhen an attempt is madeto initialize astream or cre-
ate a reader or writer when an existing stream is open in
the context. The existing stream must first be closed be-
foreinitializaing a stream for a new operation.

RTERR_NULLPTR

Null pointer. This status code is returned when a null
pointer is encountered in a place where it is expected that
the pointer valueis to be set.

RTERR_FAILED

General failure. Low level call returned error.

RTERR_ATTRFIXEDVAL

Attribute fixed value mismatch. The attribute contained a
value that was different than the fixed value defined in the
schemafor the attribute.

RTERR_MULTIPLE

Multiple errors occurred during an encode or decode op-
eration. See the error list within the context structure for
afull list of dl errors.

-51

RTERR_NOTY PEINFO

Thiserror isreturned when decoding aderived type defin-
ition and no information exists asto what type of dataisin
the element content. When decoding XML, this normally
means that an xsi:type attribute was not found identifying
the type of content.

142

XBinder

Error Codes

Error Code Error Name Description

-52 RTERR_ADDRINUSE Address already in use. This status code is returned when
an attempt is made to bind a socket to an address that is
already in use.

-53 RTERR_CONNRESET Remote connection was reset. This status codeis returned
when the connection is reset by the remote host (via ex-
plicit command or a crash).

-54 RTERR_UNREACHABLE Network failure. This status codeisreturned when the net-
work or host is down or otherwise unreachable.

-55 RTERR_NOCONN Not connected. This status codeis returned when an oper-
ation isissued on an unconnected socket.

-56 RTERR_CONNREFUSED Connection refused. This status code is returned when an
attempt to communicate on an open socket is refused by
the host.

-57 RTERR_INVSOCKOPT Invalid option. This status code is returned when an in-
valid option is passed to socket.

-58 RTERR_SOAPFAULT This error is returned when the decoded SOAP envelope
isafault message.

-59 RTERR_MARKNOTSUP This error is returned when an attempt is made to mark a
stream position on a stream type that does not support it.

-60 RTERR_NOTSUPP Featureis not supported. This status codeisreturned when
afeaturethat is currently not supported is encountered.

-61 RTERR_CODESETCONVFAIL This status code is returned when transcoding from one

character set to another one (for example, from UTF-8 to
UTF-16) and a conversion error occurs.

XML-specific Status Messages

The following table describes status messages that may arise during the course of encoding or decoding XML. The
errors below indicate that while the system was able to read the data successfully, it was unable to decode it properly.

Error Code Error Name Description

-200 XML_E_GENERR General error; an error for which no specific error code
has been defined.

-201 XML_E_INVSYMBOL An invalid XML symbol (character) was detected at the
given point in the parse stream.

-202 XML_E TAGMISMATCH| Start/end tag mismatch. The parsed end tag does not match
the start tag that was parsed earlier at thislevel. Indicates
document is not well-formed.

-203 XML_E DUPLATTR Duplicate attribute found.

-204 XML_E BADCHARREF |Bad character reference found.

-205 XML_E INVMODE Invalid mode.

-206 XML_E _UNEXPEOF Unexpected end of file (document).

-207 XML_E NOMATCH Current tag is not matched to specified one. Informational

code.

143

XBinder Error Codes

Error Code Error Name Description

-208 XML_E_ELEMMISRQ Missing required element. This status code is returned by
the decoder when the decoder knows exactly which ele-
ment is absent.

-209 XML_E ELEMSMISRQ |Missing required elements. This status codeisreturned by
the decoder when the number of elements decoded for a
given content model group is less then the required num-
ber of elements as specified in the schema.

-210 XML_E_TOOFEWELEMS| The number of elementsin arepeating collection was less
than the number of elements specified in the XSD minOc-
curs facet for this type or element.

-211 XML_E UNEXPSTARTTAGnexpected start tag.

-212 XML_E_UNEXPENDTAG |Unexpected end tag.

-213 XML_E IDNOTFOU Expected identifier not found.

-214 XML_E_INVTYPEINFO |Unknown xsi:type.

-215 XML_E _NSURINOTFOU |Namespace URI not defined for given prefix. A name-
space URI was not defined using an xmins attribute for
the given prefix.

-216 XML_E_KEYNOTFOU Keyref constraint has some key that not present in refered
constraint.

-217 XML_E DUPLKEY Key or unique constraint has duplicated key.

-218 XML_E FLDABSENT Some key has no full set of fields. It is not valid for key
constraint.

-219 XML_E DUPLFLD Some key has more than one value for field.

-220 XML_E _NOTEMPTY An element was not empty when expected.

144

